Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2015, Vol. 35 Issue (7): 62-67    DOI: 10.13523/j.cb.20150709
技术与方法     
PK-15细胞微载体悬浮培养生产猪细小病毒的工艺研究
李智力, 易小萍, 储炬, 庄英萍, 张嗣良
华东理工大学生物反应器工程国家重点实验室 上海 200237
A Microcarrier Cell Culture Process for propagating Porcine Parvovirus in PK-15 Cells
LI Zhi-li, YI Xiao-ping, CHU Ju, ZHUANG Ying-ping, ZHANG Si-liang
East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, Shanghai 200237, China
 全文: PDF(687 KB)   HTML
摘要:

通过对猪细小病毒接毒时间TOI、MOI和收毒时间进行优化,开发了一种基于PK-15细胞静置培养的猪细小病毒生产工艺,最大病毒滴度达到107.5 TCID50/ml。通过进一步优化接毒时间,成功建立了基于PK-15细胞反应器微载体悬浮培养的猪细小病毒培养工艺,在5L反应器上最大病毒滴度达到107.2 TCID50/ml。首次发现乳酸对葡萄糖得率与病毒滴度的正相关性,当猪细小病毒滴度处于最大值时,乳酸对葡萄糖得率也达到最大值,可作为指针病毒滴度及收毒时间的重要参数。

关键词: PK-15细胞PPV病毒微载体反应器    
Abstract:

In recent years, roller bottle was still used to produce porcine parvovirus. However, it was inefficient, labor-intensive and covered large areas. Now based on the optimization of time of infection (TOI), multiplicity of infection (MOI) and harvest time, porcine parvovirus static production process with PK-15 cells was well developed, that the maximum virus titre could reach 107.5 TCID50/ml. More specifically, by optimizing TOI, the process was successfully transferred from static culture to microcarrier suspension culture, and 5L bioreactor verification experiment was conducted, which enable the maximum virus titer reached 107.2 TCID50/ml. It was the first time to verify that the yield coefficients of lactate to glucose had a positive correlation with virus titre, that it could reach the peak value as soon as the porcine parvovirus at the maximum virus titre. It can be used as an important parameter for virus harvest.

Key words: PK-15 cells    Porcine parvovirus    Microcarrier    Stirred bioreactor
收稿日期: 2015-04-02 出版日期: 2015-07-25
ZTFLH:  Q813  
通讯作者: 易小萍     E-mail: xpyi@ecust.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

李智力, 易小萍, 储炬, 庄英萍, 张嗣良. PK-15细胞微载体悬浮培养生产猪细小病毒的工艺研究[J]. 中国生物工程杂志, 2015, 35(7): 62-67.

LI Zhi-li, YI Xiao-ping, CHU Ju, ZHUANG Ying-ping, ZHANG Si-liang. A Microcarrier Cell Culture Process for propagating Porcine Parvovirus in PK-15 Cells. China Biotechnology, 2015, 35(7): 62-67.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20150709        https://manu60.magtech.com.cn/biotech/CN/Y2015/V35/I7/62


[1] Bergeron J, Hebert B, Tijssen P. Genome organization of the Kresse strain of porcine parvovirus: identification of the allotropic determinant and comparison with those of NADL-2 and field isolates. Journal Of Virology, 1996, 70(4):2508-2515.

[2] Dunne H W, Gobble J L, Hokanson J F. Porcine reproductive failure associated with a newly identified'SMEDI' group of picorna viruses. American Journal of Veterinary Research, 1965, 26(2): 1284-1297.

[3] Mengeling W L, Cutlip R C. Pathogenesis of in utero infection: experimental infection of five-week-old porcine fetuses with porcine parvovirus. American Journal of Veterinary Research, 1975, 36(8): 1173-1177.

[4] Joo H S, Donaldson-Wood C R, Johnson R H. Observations on the pathogenesis of porcine parvovirus infection. Archives of Virology, 1976, 51(2): 123-129.

[5] Suzuki H, Fujisaki Y. Immunizing effect of inactivated porcine parvovirus vaccine on piglets. National Institute of Animal Health Quarterly, 1976, 16(2): 78-81.

[6] Joo H S, Johnson R H. Serological responses in pigs vaccinated with inactivated porcine parvovirus. Australian Veterinary Journal, 1977, 53(4): 550-552.

[7] Fujisaki Y, Ichihara T, Sasaki N. Field trials on inactivated porcine parvovirus vaccine for prevention of viral stillbirth among swine. National Institute of Animal Health Quarterly, 1978, 18(3): 180-185.

[8] Mengeling W L, Brown T T, Paul P S, et al. Efficacy of an inactivated virus vaccine for prevention of porcine parvovirus-induced reproductive failure. American Journal of Veterinary Research, 1979, 40(7): 204-207.

[9] Wrathall A E, Wells D E, Cartwright S F, et al. An inactivated, oil-emulsion vaccine for the prevention of porcine parvovirus-induced reproductive failure. Research in Veterinary Science, 1984, 36(5): 136-143.

[10] Vannier P, Brun A, Chappuis G, et al. Study of the efficacy of an inactivated virus vaccine against porcine parvovirus. Annales de Recherches Vétérinaires, 1986, 17(4): 425-432.

[11] Wrathall A E. Field trials of an inactivated, oil-emulsion porcine parvovirus vaccine in British pig herds. Veterinary Record, 1988, 122(1): 411-418.

[12] Kradowks, Ellis J A, Meehan B. Viral wastingsyndrome of swine: experimental reproduction of postweaning multisystemic wasting syndrome in gnotobiotic swine by coinfection with circovirus2 and porcine parvovirus. VetPathol, 2000, 37(3): 254-263.

[13] Oraveeerakul K, Sooccchoi C, Molitor T W. Detection of porcine parvovirus using nonradioactive nucleic acid hybridization. Vet Diagn Inreat, 1990, 36(2): 85-91.

[14] Van Wezel A. Growth of cell-strains and primary cells on micro-carriers in homogeneous culture. Nature, 1967, 21(6): 64-65.

[15] Tree J A, Richardson C, Fooks A R, et al. Comparison of large-scale mammalian cell culture systems with egg culture for the production of influenza virus A vaccine strains. Vaccine, 2001, 19(25-26): 3444-3450.

[16] Mengeling W L, Pejsak Z, Paul P S. Biological assay of attenuated strain NADL-2 and virulent strain NADL-8 of porcine parvovirus. Am J Vet.Res, 1984, 45(11): 2403-2407.

[17] Kunal A, Frank J, Luis M, et al. Bioprocess optimization for cell culture based influenza vaccine production. Vaccine, 2011, 29(17): 3320-3328.

[18] 杨琴, 张兴晓, 杨灵芝. 3种细胞培养流感病毒的比较. 动物医学进展, 2009,30(11):76-79. Yang Q, Zhang X X, Yang L Z. Comparison of cultureing influenza virus in three kinds of cell lines. Progress In Veterinary Medicine, 2009,30(11):76-79.

[19] 魏战勇, 崔保安, 张素梅, 等. 猪细小病毒在PK细胞中的增殖过程. 中国兽医学报, 2005,25(5):453-455. Wei Z Y, Cui B A, Zhang S M, et al. The replication of porcine parvovirus in PK-15 cell cultures. Chinese Journal Of Veterinary Science, 2005,25(5):453-455.

[1] 王惠临,周凯强,朱红雨,王力景,杨仲璠,徐明波,曹荣月. 凝血因子VII及其重组表达新进展[J]. 中国生物工程杂志, 2021, 41(2/3): 129-137.
[2] 靳露,周航,曹云,王振守,曹荣月. 高通量灌流培养模型在生物工艺开发中的应用研究[J]. 中国生物工程杂志, 2020, 40(8): 63-73.
[3] 梁振鑫,刘芳,张玮,刘庆友,李力. 抗p185 erb B2人鼠嵌合抗体ChAb26转基因小鼠乳腺生物反应器的制备与验证 *[J]. 中国生物工程杂志, 2019, 39(8): 40-51.
[4] 郭玉蕾,唐亮,孙瑞强,李尤,陈依军. 高通量微型生物反应器的研究进展[J]. 中国生物工程杂志, 2018, 38(8): 69-75.
[5] 李亚芳,赵颖慧,刘赛宝,王伟,曾为俊,王金泉,陈洪岩,孟庆文. 鸡OV启动子表达HA对禽流感病毒攻击提供完全保护 *[J]. 中国生物工程杂志, 2018, 38(7): 67-74.
[6] 孙静静,周伟伟,周雷鸣,赵巧辉,李桂林. 杂交瘤细胞体外大规模培养研究进展[J]. 中国生物工程杂志, 2018, 38(10): 82-89.
[7] 苏晓蕊, 李伟国, 王延辉, 高晓静, 闪伊红, 谭菲菲, 李向东, 田克恭. 重组杆状病毒细小VP2蛋白40L生物反应器放大工艺研究[J]. 中国生物工程杂志, 2017, 37(10): 60-64.
[8] 林优红, 程霞英, 严依雯, 梁宗锁, 杨宗岐. 衣藻叶绿体表达重组蛋白及表达优化策略[J]. 中国生物工程杂志, 2017, 37(10): 118-125.
[9] 刘婷婷, 梁梓强, 梁士可, 郭技星, 王方海. 利用生物工程技术生产蜘蛛丝的研究进展[J]. 中国生物工程杂志, 2016, 36(5): 132-137.
[10] 赵绘存. 基于专利信息可视化的生物反应器发展态势分析[J]. 中国生物工程杂志, 2016, 36(1): 115-121.
[11] 张丹凤, 余自青, 吴锁伟, 饶力群, 万向元. 植物生物反应器在分子医药农业中的应用[J]. 中国生物工程杂志, 2016, 36(1): 86-94.
[12] 申斓, 周爱东, 吴小芹. 植物细胞培养生物反应器的种类特点及展望[J]. 中国生物工程杂志, 2015, 35(8): 109-115.
[13] 王鹏, 郑兆鑫, 刘明秋. 猪Mx1和牛Mx1蛋白在PK-15细胞中的表达及其对伪狂犬病病毒的抑制[J]. 中国生物工程杂志, 2015, 35(3): 1-7.
[14] 梁振鑫, 尹富强, 刘庆友, 李力. 转基因动物乳腺生物反应器相关技术及研究进展[J]. 中国生物工程杂志, 2015, 35(2): 92-98.
[15] 张斯敏, 高越, 方彧聃, 张金脉, 张敬之. 乳腺生物反应器特异高效表达载体的构建[J]. 中国生物工程杂志, 2014, 34(7): 49-55.