Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (5): 85-91    DOI: 10.13523/j.cb.20180512
综述     
生物质生物预处理研究进展与展望
秦梦彤,胡婧,李冠华()
内蒙古大学生命科学学院 呼和浩特 010020
Recent Developments and Future Prospect of Biological Pretreatment
Meng-tong QIN,Jing HU,Guan-hua LI()
College of Life Sciences, Inner Mongolia University, Huhhot 010020, China
 全文: PDF(573 KB)   HTML
摘要:

木质纤维素生物质分布广、产量大、可再生,用于制备生物基能源、生物基材料和生物基化学品。木质纤维素生物质组成复杂,包含纤维素、半纤维素和木质素等,木质素与半纤维素通过共价键、氢键交联形成独特的“包裹结构”,纤维素含有复杂的分子内与分子间氢键,上述因素制约着其资源化利用。生物预处理以其独特优越性成为生物质研究的重要方面。系统阐述了生物预处理过程中木质素降解和基团修饰对纤维素酶解的影响,纤维素含量及结晶区变化,半纤维素五碳糖利用,微观物理结构的改变。进一步提出了以生物预处理为核心的组合预处理、基于不同功能的多酶协同催化体系、木质纤维素组分分级利用和新型高效细菌预处理工艺是生物预处理未来发展的重要趋势。

关键词: 生物预处理生物质木质纤维素    
Abstract:

Lignocellulosic biomass, a kind of renewable and widely distributed resource on earth, serves as a potential source for the production of bio-based energy, bio-based materials and bio-based chemicals. Resistance barrier is the major limitation in conversion of lignocellulosic biomass. The main components of lignocellulosic biomass are cellulose, hemicellulose and lignin. Lignin interacts with hemicellulose through hydrogen or covalent bonding, acting as a physical barrier that restricts the access of cellulose. Furthermore, there is a strong hydrogen bonding among crystalline cellulose. Though several pretreatments are available, biological pretreatment seems to be promising as an eco-friendly process and has been paid much attention by many researchers. The effects of biological pretreatment on cellulose, hemicellulose and lignin were evaluated. The degradation and modification of lignin, variation of cellulose content and crystalline cellulose, production and utilization of pentose from hemicelluloses, and microstructure changes during the biological pretreatment were systematically reviewed. In addition, the future prospect of combination pretreatments, multi-enzyme catalytic system, biomass component fractionation and utilization, and the efficient bacterial pretreatment were put forward.

Key words: Biological pretreatment    Biomass    Lignocellulose
收稿日期: 2017-11-10 出版日期: 2018-06-05
ZTFLH:  Q819  
通讯作者: 李冠华     E-mail: liguanhua1984@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
秦梦彤
胡婧
李冠华

引用本文:

秦梦彤,胡婧,李冠华. 生物质生物预处理研究进展与展望[J]. 中国生物工程杂志, 2018, 38(5): 85-91.

Meng-tong QIN,Jing HU,Guan-hua LI. Recent Developments and Future Prospect of Biological Pretreatment. China Biotechnology, 2018, 38(5): 85-91.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20180512        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I5/85

图1  木质纤维素降解机制
[1] 马泽林, 刘家亨, 黄序 , 等. 生物利用木质纤维素的研究进展. 中国生物工程杂志, 2017,37(6):124-133.
doi: 10.13523/j.cb.20170618
Ma Z L, Liu J H, Huang X , et al. Research progress on utilization of lignocellulosic biomass by microorganisms. China Biotechnology, 2017,37(6):124-133.
doi: 10.13523/j.cb.20170618
[2] 刘敬然, 李冠华 . 好氧固态发酵的研究现状与展望. 食品与机械, 2016,32(6):220-224.
Liu J R, Li G H . Present situation and future prospect of aerobic solid-state fermentation. Food & Machinery, 2016,32(6):220-224.
[3] Waksman S A, Cordon T C . Thermophilic decomposition of plant residues incomposts by pure and mixed cultures of microorganisms. Soil Science, 1939,47(3):217-226.
doi: 10.1097/00010694-193903000-00006
[4] Sindhu R, Binod P, Pandey A . Biological pretreatment of lignocellulosic biomass- an overview. Bioresource Technology, 2016,199:76-82.
doi: 10.1016/j.biortech.2015.08.030 pmid: 26320388
[5] Wong D W S . Structure and action mechanism of ligninolytic enzymes. Applied Biochemistry and Biotechnology, 2009,157(2):174-209.
doi: 10.1007/s12010-008-8279-z pmid: 18581264
[6] Kumar R, Wyman C E . Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologies. Biotechnology Progress, 2009,25(2):302-314.
doi: 10.1002/btpr.102 pmid: 19301243
[7] Isroi, Millati R , Syamsiah S, et al. Biological pretreatment of lignocelluloses with white-rot fungi and its applications: a review. BioResources, 2011,6(4):5224-5259.
doi: 10.1515/HF.2010.121
[8] Rouches E, Herpo?l-Gimbert I, Steyer J P , et al. Improvement of anaerobic degradation by white-rot fungi pretreatment of lignocellulosic biomass: a review. Renewable & Sustainable Energy Reviews, 2016,59:179-198.
doi: 10.1016/j.rser.2015.12.317
[9] Sánchez C . Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnology Advances, 2009,27(2):185-194.
doi: 10.1016/j.biotechadv.2008.11.001 pmid: 19100826
[10] Saha B C, Qureshi N, Kennedy G J , et al. Biological pretreatment of corn stover with white-rot fungus for improved enzymatic hydrolysis. International Biodeterioration& Biodegradation, 2016,109:29-35.
doi: 10.1016/j.ibiod.2015.12.020
[11] Zhao L, Cao G L, Wang A J , et al. Fungal pretreatment of cornstalk with Phanerochaete chrysosporium for enhancing enzymatic saccharification and hydrogen production. Bioresource technology, 2012,114(3):365-369.
doi: 10.1016/j.biortech.2012.03.076 pmid: 22516249
[12] Wang W, Yuan T Q, Cui B K . Biological pretreatment with white rot fungi and their co-culture to overcome lignocellulosic recalcitrance for improved enzymatic digestion. BioResources, 2014,9(3):3968-3976.
doi: 10.15376/biores.9.3.3968-3976
[13] Nazarpour F, Abdullah D K, Abdullah N , et al. Evaluation of biological pretreatment of rubberwood with white rot fungi for enzymatic hydrolysis. Materials, 2013,6(5):2059-2073.
doi: 10.3390/ma6052059 pmid: 28809260
[14] Zhang X Y, Xu C Y, Wang H X . Pretreatment of bamboo residues with Coriolus versicolor for enzymatic hydrolysis. Journal of Bioscience and Bioengineering, 2007,104(2):149-151.
doi: 10.1263/jbb.104.149 pmid: 17884661
[15] Mishra V, Jana A K, Jana M M , et al. Fungal pretreatment of sweet sorghum bagasse with supplements: Improvement in lignin degradation, selectivity and enzymatic saccharification. Biotech Biotechnology, 2017,7(2):110.
doi: 10.1007/s13205-017-0719-4 pmid: 5451353
[16] Wan C X, Li Y B . Microbial pretreatment of corn stover with Ceriporiopsis subvermispora for enzymatic hydrolysis and ethanol production. Bioresource Technology, 2010,101(16):6398-6403.
doi: 10.1016/j.biortech.2010.03.070 pmid: 20381341
[17] Castoldi R, Bracht A , Morais G R D, et al. Biological pretreatment of eucalyptus grandis sawdust with white-rot fungi: Study of degradation patterns and saccharification kinetics. Chemical Engineering Journal, 2014,258(15):240-246.
doi: 10.1016/j.cej.2014.07.090
[18] Kumar M, Singhal A, Thakur I S . Comparison of submerged and solid state pretreatment of sugarcane bagasse by Pandoraea sp. ISTKB: enzymatic and structural analysis. Bioresource Technology, 2016,203:18-25.
doi: 10.1016/j.biortech.2015.12.034 pmid: 26720135
[19] Monrroy M, Ortega I, Ramírez M , et al. Structural change in wood by brown rot fungi and effect on enzymatic hydrolysis. Enzyme and Microbial Technology, 2011,49(5):472-477.
doi: 10.1016/j.enzmictec.2011.08.004 pmid: 22112620
[20] Wang W, Yuan T Q, Wang K , et al. Combination of biological pretreatment with liquid hot water pretreatment to enhance enzymatic hydrolysis of Populust omentosa. Bioresource Technology, 2012,107(3):282-286.
doi: 10.1016/j.biortech.2011.12.116 pmid: 22244900
[21] Wu X J, An Q, Dai Y C , et al. Investigating lignocellulose in cornstalk pretreated with Tramete spubescens Cui 7571 to improve enzymatic saccharification. BioResources, 2016,11(1):2768-2783.
doi: 10.15376/biores.11.1.2768-2783
[22] Li G Y, Huang L H, Hse C Y , et al. Chemical compositions, infrared spectroscopy, and X-ray diffractometry study on brown-rotted woods. Carbohydrate Polymers, 2011,85(3):560-564.
doi: 10.1016/j.carbpol.2011.03.014
[23] Sannigrahi P, Miller S J, Ragauskas A J . Effects of organosolv pretreatment and enzymatic hydrolysis on cellulose structure and crystallinity in loblolly pine. Carbohydrate Research, 2010,345(7):965-970.
doi: 10.1016/j.carres.2010.02.010 pmid: 20307873
[24] 李冠华, 邵小涵, 苑琳 . 桦剥管孔菌固态发酵纤维素酶及发酵基质酶解. 纤维素科学与技术, 2016,24:19-24.
Li G H, Shao X H, Yuan L . Integrative process for enzymatic hydrolysis employing SSF produced cellulase by Piptoporus betulinus. Journal of Cellulose Science and Technology, 2016,24:19-24.
[25] Zhi Z L, Wang H . White-rot fungal pretreatment of wheat straw with Phanerochaete chrysosporium for biohydrogen production: Simultaneous saccharification and fermentation. Bioprocess and Biosystems Engineering, 2014,37(7):1447-1458.
doi: 10.1007/s00449-013-1117-x pmid: 24429553
[26] Liu J, Wang M L, Tonnis B , et al. Fungal pretreatment of switchgrass for improved saccharification and simultaneous enzyme production. Bioresource Technology, 2013,135(2):39-45.
doi: 10.1016/j.biortech.2012.10.095 pmid: 23195655
[27] Bari E, Nazarnezhad N, Kazemi S M , et al. Comparison between degradation capabilities of the white rot fungi Pleurotus ostreatus and Trametes versicolor in beech wood. International Biodeterioration & Biodegradation, 2015,104:231-237.
[28] Travaini R, Martín-Juárez J, Lorenzo-Hernando A , et al. Ozonolysis: An advantages pretreatment for lignocellulosic biomass revisited. Bioresource Technology, 2016,199:2-12.
doi: 10.1016/j.biortech.2015.08.143 pmid: 26409859
[29] Eibinger M, Bubner P, Ganner T , et al. Surface structural dynamics of enzymatic cellulose degradation, revealed by combined kinetic and atomic force microscopy studies. The FEBS Journal, 2014,218(1):275-290.
doi: 10.1111/febs.12594 pmid: 24320702
[30] Yu J, Zhang J B, He J , et al. Combinations of mild physical or chemical pretreatment with biological pretreatment for enzymatic hydrolysis of rice hull. Bioresource Technology, 2009,100(2):903-908.
doi: 10.1016/j.biortech.2008.07.025
[31] Zhong W X, Yu H B, Song L L , et al. Combined pretreatment with white-rot fungus and alkaliat near room-temperature for improving saccharification of corn stalks. BioResources, 2011,6(3):3440-3451.
doi: 10.1515/HF.2011.079
[32] Li G H, Chen H Z . Synergistic mechanism of steam explosion combined with fungal treatment by Phellinus baumii for the pretreatment of corn stalk. Biomass and Bioenergy, 2014,67:1-7.
doi: 10.1016/j.biombioe.2014.04.011
[33] Ma F Y, Yang N, Xu C Y , et al. Combination of biological pretreatment with mild acid pretreatment for enzymatic hydrolysis and ethanol production from water hyacinth. Bioresource Technology, 2010,101(24):9600-9604.
doi: 10.1016/j.biortech.2010.07.084 pmid: 20202020202020202020202020202020
[34] Balan V , Da C S L, Chundawat S P, et al. Mushroom spent straw: a potential substrate for an ethanol-based biorefinery. Journal of Industrial Microbiology & Biotechnology, 2008,35(5):293-301.
doi: 10.1007/s10295-007-0294-5 pmid: 18180966
[35] Baba Y, Tanabe T, Shirai N , et al. Pretreatment of Japanese cedar wood by white rot fungi and ethanolysis for bioethanol production. Biomass & Bioenergy, 2011,35(1):320-324.
doi: 10.1016/j.biombioe.2010.08.040
[36] Kadimaliev D A, Revin V V, Atykian N A , et al. Effect of wood modification on lignin consumption and synthesis of lignolytic enzymes by the fungus Panus (Lentinus) tigrinus. Applied Biochemistry & Microbiology, 2003,39(5):488-492.
doi: 10.1023/A:1025448703138 pmid: 14593869
[37] Wang F Q, Xie H, Chen W , et al. Biological pretreatment of corn stover with ligninolytic enzyme for high efficient enzymatic hydrolysis. Bioresource Technology, 2013,144:572-578.
doi: 10.1016/j.biortech.2013.07.012 pmid: 23896439
[38] Rodrigues M A M, Pinto P, Bezerra R M F , et al. Effect of enzyme extracts isolated from white-rot fungi on chemical composition and in vitro digestibility of wheat straw. Animal Feed Science and Technology, 2008,141(3-4):326-338.
doi: 10.1016/j.anifeedsci.2007.06.015
[39] Qiu W H, Chen H Z . Enhanced the enzymatic hydrolysis efficiency of wheat straw after combined steam explosion and laccase pretreatment. Bioresource Technology, 2012,118(4):8-12.
doi: 10.1016/j.biortech.2012.05.033 pmid: 22695139
[40] Hemsworth G R, Taylor E J, Kim R Q , et al. The copper active site of CBM33 polysaccharide oxygenases. Journal of the American Chemical Society, 2013,135(16):6069-6077.
doi: 10.1021/ja402106e
[41] Langston J A, Shaghasi T, Abbate E , et al. Oxidoreductive cellulose depolymerization by the enzymes cellobiose dehydrogenase and glycoside hydrolase 61. Applied and Environmental Microbiology, 2011,77(19):7007-7015.
doi: 10.1128/AEM.05815-11 pmid: 3187118
[42] Vermaas J V, Payne C M, Crowley M F , et al. Effects of lytic polysaccharide monooxygenase oxidation on cellulose structure and binding of oxidized cellulose oligomers to cellulases. Journal of Physical Chemistry B, 2013,104(2):6129-6143.
doi: 10.1016/j.bpj.2012.11.658 pmid: 25785779
[43] Schroyen M, Vervaeren H , Van Hulle S W H, et al. Impact of enzymatic pretreatment on corn stover degradation and biogas production. Bioresource Technology, 2014,173:59-66.
doi: 10.1016/j.biortech.2014.09.030 pmid: 25285760
[44] Hu J, Arantes V, Saddler J N . The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect. Biotechnology for Biofuels, 2011,4(1):36.
doi: 10.1186/1754-6834-4-36 pmid: 3198685
[45] Zhao J, Zheng Y, Li Y B . Fungal pretreatment of yard trimmings for enhancement of methane yield from solid-state anaerobic digestion. Bioresource Technology, 2014,156:176-181.
doi: 10.1016/j.biortech.2014.01.011 pmid: 24502916
[46] Camassola M , Dillon A J P. Biological pretreatment of sugar cane bagasse for the production of cellulases and xylanases by Penicillium echinulatum. Industrial Crops & Products, 2009,29(2-3):642-647.
doi: 10.1016/j.indcrop.2008.09.008
[47] Gibson D M, King B C, Hayes M L , et al. Plant pathogens as a source of diverse enzymes for lignocellulose digestion. Current Opinion in Microbiology, 2011,14(3):264-270.
doi: 10.1016/j.mib.2011.04.002 pmid: 21536481
[48] Masai E, Katayama Y, Fukuda M . Genetic and biochemical investigations on bacterial catabolic pathways for lignin-derived aromatic compounds. Bioscience Biotechnology and Biochemistry, 2007,71(1):1-15.
doi: 10.1271/bbb.60437 pmid: 17213657
[49] Saritha M, Arora A , Lata. Biological pretreatment of lignocellulosic substrates for enhanced delignification and enzymatic digestibility. Indian Journal of Microbiology, 2012,52(2):122-130.
doi: 10.1007/s12088-011-0199-x pmid: 3386436
[50] Wang Y X, Liu Q, Yan L , et al. A novel lignin degradation bacterial consortium for efficient pulping. Bioresource Technology, 2013,139(7):113-119.
doi: 10.1016/j.biortech.2013.04.033 pmid: 23648760
[51] Graham J E, Clark M E, Nadler D C , et al. Identification and characterization of a multidomain hyperthermophilic cellulase from an archaeal enrichment. Nature Communications, 2011,2(1):375.
doi: 10.1038/ncomms1373 pmid: 21730956
[52] Yuan X F, Wen B T, Ma X G , et al. Enhancing the anaerobic digestion of lignocellulose of municipal solid waste using a microbial pretreatment method. Bioresource Technology, 2014,154(1):1.
doi: 10.1016/j.biortech.2013.11.090 pmid: 24365784
[53] Bokinsky G, Peraltayahya P P, George A , et al. Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 2011,108(50):19949-19954.
doi: 10.1073/pnas.1106958108
[54] Ryu S H, Cho M K, Kim M , et al. Enhanced lignin biodegradation by a laccase-overexpressed white-rot fungus Polyporus brumalis in the pretreatment of wood chips. Applied Biochemistry & Biotechnology, 2013,171(6):1525-1534.
doi: 10.1007/s12010-013-0412-y pmid: 23975277
[1] 高寅岭,张凤娇,赵贵众,张宏森,王风芹,宋安东. 衣康酸发酵研究进展[J]. 中国生物工程杂志, 2021, 41(5): 105-113.
[2] 张野,王吉平,苏天明,何铁光,王瑾,曾向阳. 筛选微生物降解木质纤维素的研究进展[J]. 中国生物工程杂志, 2020, 40(6): 100-105.
[3] 孟迎迎, 姚长洪, 刘娇, 申培丽, 薛松, 杨青. 微藻生物质成分检测方法评述[J]. 中国生物工程杂志, 2017, 37(7): 133-143.
[4] 马泽林, 刘家亨, 黄序, 财音青格乐, 朱宏吉. 微生物利用木质纤维素的研究进展[J]. 中国生物工程杂志, 2017, 37(6): 124-133.
[5] 曹长海, 张全, 关浩, 王领民, 乔凯, 佟明友. 提高木质纤维素酶解糖化效率的研究进展[J]. 中国生物工程杂志, 2015, 35(8): 126-136.
[6] 熊圆圆, 卢传东, 陶冶, 赵锦芳. 重组大肠杆菌利用废纸水解液发酵产L-乳酸[J]. 中国生物工程杂志, 2015, 35(5): 49-54.
[7] 李谢昆, 周卫征, 郭颖, 吴浩, 许敬亮, 袁振宏. 微藻生物质制备燃料乙醇关键技术研究进展[J]. 中国生物工程杂志, 2014, 34(5): 92-99.
[8] 张东旭. 生物法脱除木质纤维素水解液中抑制因子的最新研究进展[J]. 中国生物工程杂志, 2013, 33(5): 120-124.
[9] 刘华擎, 李灏. 生物质能源发酵中染菌及防控的研究进展[J]. 中国生物工程杂志, 2013, 33(12): 114-120.
[10] 叶菁, 许敬亮, 肖波, 袁振宏, 徐惠娟, 杨柳, 李谢昆. 谷氨酸棒杆菌戊糖代谢利用研究进展[J]. 中国生物工程杂志, 2012, 32(11): 132-136.
[11] 叶菁, 许敬亮, 肖波, 袁振宏, 徐惠娟, 杨柳, 李谢昆. 谷氨酸棒杆菌戊糖代谢利用研究进展[J]. 中国生物工程杂志, 2012, 32(11): 132-136.
[12] 杨琪, 王科荣, 孔维宝, 杨红, 曹海, 张馨允. 响应面法优化普通小球藻混合营养培养基组成生产生物质[J]. 中国生物工程杂志, 2012, 32(09): 70-75.
[13] 徐勇, 王荥, 朱均均, 勇强, 余世袁. 木糖高效生物转化的新出路[J]. 中国生物工程杂志, 2012, 32(05): 113-119.
[14] 万楚筠, 刘睿, 黄凤洪, 黄茜. 油菜秸秆混合发酵降解菌的筛选[J]. 中国生物工程杂志, 2011, 31(06): 70-74.
[15] 黄俊, 陈东, 黄日波. 纤维小体在燃料乙醇中的应用[J]. 中国生物工程杂志, 2011, 31(01): 103-108.