Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (2/3): 30-37    DOI: 10.13523/j.cb.2010033
技术与方法     
耐热植酸酶突变体的筛选及性质研究 *
陈中伟,郑璞,陈鹏程,吴丹()
江南大学生物工程学院 无锡 214112
Screening and Characterization of Thermostable Phytase Mutants
CHEN Zhong-wei,ZHENG Pu,CHEN Peng-cheng,WU Dan()
School of Biotechnology, Jiangnan University, Wuxi 214122, China
 全文: PDF(3391 KB)   HTML
摘要:

目的: 对大肠杆菌Escherichia coli植酸酶基因进行定向进化,获得热稳定性提高的植酸酶突变体。方法: 利用易错PCR技术和96微孔板高通量筛选方法获得突变体基因,并对突变酶进行异源表达、纯化及性质研究。结果: 通过筛选获得3株热稳定性明显提高的植酸酶突变体APPA1、APPA2、APPA3。酶学性质分析结果表明,3个突变体分子量均约为55kDa,最适pH均为4.5,与野生型无明显差别,热稳定性较野生型均有显著提高,其中突变体APPA3的最适温度为65℃,较野生酶提高5℃,在90℃处理10min后保留50%的酶活。酶的三维结构模拟显示,5个突变位点在植酸酶整体结构上均引入新氢键。结论: 通过定向进化获得热稳定性提高的大肠杆菌Escherichia coli植酸酶突变体,对植酸酶的工业应用和研究植酸酶结构与功能关系具有重要意义。

关键词: 植酸酶易错PCR热稳定性毕赤酵母    
Abstract:

Objective: Directed evolution of Escherichia coli phytase gene to obtain phytase mutants with improved thermostability. Methods: The mutant gene was obtained by error-prone PCR and the high-throughput screening methods of 96-well plate. After heterologous expression and purification, the mutant enzymes were characterized. Results: Three phytase mutants APPA1, APPA2 and APPA3 with significantly improved thermal stability were obtained through screening. The results of enzymatic properties analysis showed that the molecular weight of the three mutants was about 55kDa, and the optimum pH was 4.5, which was not significantly different from the wild-type. The thermal stability of mutants was significantly improved compared with the wild-type. Among them, the suitable temperature of APPA3 is 65℃, which is 5℃ higher than wild enzyme, and 50% of the enzyme activity is retained after treatment at 90℃ for 10 minutes. The three-dimensional structure simulation of the enzyme showed that the five mutation sites introduced new hydrogen bonds in the overall structure of the phytase. Conclusion: Obtaining Escherichia coli phytase mutants with improved thermal stability through directed evolution is of great significance to the industrial application of phytase and the study of the relationship between phytase structure and function.

Key words: Phytase    Error-prone PCR    Thermostability    Pichia pastoris
收稿日期: 2020-10-25 出版日期: 2021-04-08
ZTFLH:  Q814  
基金资助: * 江苏省自然科学基金资助项目(BK20171261)
通讯作者: 吴丹     E-mail: wudan@jiangnan.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈中伟
郑璞
陈鹏程
吴丹

引用本文:

陈中伟,郑璞,陈鹏程,吴丹. 耐热植酸酶突变体的筛选及性质研究 *[J]. 中国生物工程杂志, 2021, 41(2/3): 30-37.

CHEN Zhong-wei,ZHENG Pu,CHEN Peng-cheng,WU Dan. Screening and Characterization of Thermostable Phytase Mutants. China Biotechnology, 2021, 41(2/3): 30-37.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2010033        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I2/3/30

名称 粗酶液酶活
(U/mL)
蛋白质浓度
(mg/mL)
比酶活
(U/mg)
野生酶APPA 17.076 0.586 29.140
突变体APPA1 23.265 0.695 33.475
突变体APPA2 16.843 0.574 29.343
突变体APPA3 20.837 0.601 34.671
表1  植酸酶野生型和突变体粗酶液的活性
图1  植酸酶野生型和突变体纯化产物SDS-PAGE分析
图2  植酸酶野生型和突变体的最适pH
图3  植酸酶野生型和突变体的pH稳定性
图4  植酸酶野生型和突变体的最适温度
图5  植酸酶野生型和突变体的热稳定性(热处理10min)
名称 Km
(mmol/L)
kcat
(s-1)
kcat/Km
[L/(mmol·s)]
野生酶APPA 8.85 957.34 108.17
突变体APPA1 8.43 903.71 107.20
突变体APPA2 8.82 972.93 110.31
突变体APPA3 8.96 983.38 109.75
表2  植酸酶野生型和突变体的动力学参数
图6  大肠杆菌植酸酶三维建模结构
图7  突变位点引起的三维结构变化
[1] 王红宁, 黄勇, 陈惠, 等. 饲用微生物植酸酶的研究进展. 国外畜牧学(饲料), 1998,( 5):17-20.
Wang H N, Huang Y, Chen H, et al. Research progress of microbial phytase for feed. Animal Science Abrod (Feed), 1998,5(1):17-20.
[2] Lott J N A, Ockenden I, Raboy V, et al. Phytic acid and phosphorus in crop seeds and fruits: a global estimate. Seed Science Research, 2000,10(1):11-33.
[3] Reddy N R, Sathe S K, Salunkhe D K. Phytates in legumes and cereals. Advances in Food Research, 1982,28(1):1-92.
[4] Frontela C, Scarino M L, Ferruzza S, et al. Effect of dephytinization on bioavailability of iron, calcium and zinc from infant cereals assessed in the Caco-2 cell model. World Journal of Gastroenterology, 2009,15(16):1977-1984.
doi: 10.3748/wjg.15.1977 pmid: 19399930
[5] Liu N, Ru Y J, Li F D, et al. Effect of diet containing phytate and phytase on the activity and messenger ribonucleic acid expression of carbohydrase and transporter in chickens. Journal of Animal Science, 2008,86(12):3432-3439.
pmid: 18708594
[6] Lei X, Stahl C. Biotechnological development of effective phytases for mineral nutrition and environmental protection. Applied Microbiology and Biotechnology, 2001,57(4):474-481.
doi: 10.1007/s002530100795 pmid: 11762591
[7] 丁强, 杨培龙, 黄火清, 等. 植酸酶发展现状和研究趋势. 中国农业科技导报, 2010,12(3):27-33.
Ding Q, Yang P L, Huang H Q, et al. Development status and research trends of phytases. Journal of Agricultural Science and Technology, 2010,12(3):27-33.
[8] Garrett J B, Kretz K A, O’Donoghue E, , et al. Enhancing the thermal tolerance and gastric performance of a microbial phytase for use as a phosphate-mobilizing monogastric-feed supplement. Applied and Environmental Microbiology, 2004,70(5):3041-3046.
doi: 10.1128/aem.70.5.3041-3046.2004 pmid: 15128565
[9] Yao M Z, Wang X, Wang W, et al. Improving the thermostability of Escherichia coli phytase, appA, by enhancement of glycosylation. Biotechnology Letters, 2013,35(10):1669-1676.
doi: 10.1007/s10529-013-1255-x pmid: 23794051
[10] Zhu W, Qiao D, Huang M, et al. Modifying thermostability of AppA from Escherichia coli. Current Microbiology, 2010,61(4):267-273.
doi: 10.1007/s00284-010-9606-5 pmid: 20213104
[11] Fei B, Xu H, Cao Y, et al. A multi-factors rational design strategy for enhancing the thermostability of Escherichia coli AppA phytase. Journal of Industrial Microbiology and Biotechnology, 2013,40(5):457-464.
pmid: 23494709
[12] Kim M S, Lei X G. Enhancing thermostability of Escherichia coli phytase AppA2 by error-prone PCR. Applied Microbiology and Biotechnology, 2008,79(1):69-75.
doi: 10.1007/s00253-008-1412-7 pmid: 18340444
[13] Guerrero-Olazarán M, Rodríguez-Blanco L, Carreon-Trevi?o J G, et al. Bacterial phytase produced in Pichia pastoris. Journal of Biotechnology, 2007,131(2):S233-S234.
[14] 罗会颖, 黄火清, 柏映国, 等. 增加植酸酶基因appA-m的拷贝提高其在巴斯德毕赤酵母的表达量. 生物工程学报, 2006,22(4):528-533.
Luo H Y, Huang H Q, Bai Y G, et al. Improving phytase expression by increasing the gene copy number of appA m in Pichia pastoris. Chinese Journal of Biotechnology, 2006,22(4):528-533.
[15] 陈琛. 植酸酶活性测定方法的研究进展. 中国饲料, 2010,20:16-18,22.
Chen C. Research progress of methods for determining the enzyme activity of phytase. China Feed, 2010,20:16-18,22.
[16] 冯慧玲, 李春梅, 吴振芳, 等. 易错PCR技术提高黑曲霉N25植酸酶活力的研究. 生物技术通报, 2010,10(1):226-230.
Feng H L, Li C M, Wu Z F, et al. Increasing activity of phytase from Aspergillus niger N25 by error-prone PCR. Biotechnology Bulletin, 2010,10(1):226-230.
[17] Lim D, Golovan S, Forsberg C W, et al. Crystal structures of Escherichia coli phytase and its complex with phytate. Nature Structural Biology, 2000,7(2):108-113.
doi: 10.1038/72371 pmid: 10655611
[18] Bornscheuer U T, Altenbuchner J, Meyer H H. Directed evolution of an esterase for the stereoselective resolution of a key intermediate in the synthesis of epothilones. Biotechnology and Bioengineering, 1998,58(5):554-559.
doi: 10.1002/(sici)1097-0290(19980605)58:5<554::aid-bit12>3.0.co;2-b pmid: 10099292
[19] Vogt G, Woell S, Argos P. Protein thermal stability, hydrogen bonds, and ion pairs. Journal of Molecular Biology, 1997,269(4):631-643.
doi: 10.1006/jmbi.1997.1042 pmid: 9217266
[20] Chakravarty S, Varadarajan R. Elucidation of factors responsible for enhanced thermal stability of proteins: a structural genomics based study. Biochemistry, 2002,41(25):8152-8161.
doi: 10.1021/bi025523t pmid: 12069608
[21] Pack S P, Yoo Y J. Protein thermostability: structure-based difference of amino acid between thermophilic and mesophilic proteins. Journal of Biotechnology, 2004,111(3):269-277.
doi: 10.1016/j.jbiotec.2004.01.018 pmid: 15246663
[22] Bagautdinov B, Yutani K. Structure of indole‐3‐glycerol phosphate synthase from Thermus thermophilus HB8: implications for thermal stability. Acta Crystallographica Section D,Biological Crystallography, 2011,67(Pt12):1054-1064.
[23] 郭玉淅, 高贺, 倪辉, 等. 基于理性设计提高产微球茎菌AG1琼胶酶的热稳定性. 中国食品学报, 2019,19(12):83-88.
Guo Y X, Gao H, Ni H, et al. Improving thermal stability of Microbulbifer sp. AG1 agarase based on rational design. Journal of Chinese Institute of Food Science and Technology, 2019,19(12):83-88.
[24] Wang X, Du J, Zhang Z Y, et al. A rational design to enhance the resistance of Escherichia coli phytase appA to trypsin. Applied Microbiology and Biotechnology, 2018,102(22):9647-9656.
doi: 10.1007/s00253-018-9327-4 pmid: 30178201
[1] 明玥,赵自通,王鸿磊,梁志宏. 基于序列和结构分析的酶热稳定性改造策略*[J]. 中国生物工程杂志, 2021, 41(10): 100-108.
[2] 陈鑫洁,钱芷兰,刘启,赵清,张元兴,蔡孟浩. 毕赤酵母底盘芳香族氨基酸合成途径改造生产肉桂酸及对香豆酸*[J]. 中国生物工程杂志, 2021, 41(10): 52-61.
[3] 石鹏程, 纪晓俊. 酵母系统表达人表皮生长因子研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 72-79.
[4] 赵晓艳,陈允妲,章雅倩,吴晓玉,王飞,陈金印. Myxococcus sp.V11海藻糖合酶TreS II分子改造 *[J]. 中国生物工程杂志, 2020, 40(3): 79-87.
[5] 田园,李艳玲. 基于重组毕赤酵母的fusaruside生物合成 *[J]. 中国生物工程杂志, 2019, 39(7): 8-14.
[6] 彭强强,刘启,徐名强,张元兴,蔡孟浩. 新型重组毕赤酵母产人胰岛素前体的表达工艺研究 *[J]. 中国生物工程杂志, 2019, 39(7): 48-55.
[7] 严建,贾禄强,丁健,史仲平. 甲醇周期诱导控制强化毕赤酵母生产猪α干扰素 *[J]. 中国生物工程杂志, 2019, 39(6): 32-40.
[8] 杜立,宿玲恰,吴敬. 提高源自Bacillus circulans 251的β-CGTase对麦芽糖亲和性及其在生产海藻糖中的应用 *[J]. 中国生物工程杂志, 2019, 39(5): 96-104.
[9] 姚银,闵琪,熊海容,张莉. 木聚糖酶和甘露聚糖酶在毕赤酵母中的共表达及产酶分析 *[J]. 中国生物工程杂志, 2019, 39(3): 37-45.
[10] 张文玉,魏东升,钱江潮. 共表达PDI1MDH1HAC1基因对重组毕赤酵母分泌表达葡糖氧化酶的影响 *[J]. 中国生物工程杂志, 2019, 39(10): 24-33.
[11] 王彤,徐岩,喻晓蔚. 毕赤酵母Kex2蛋白酶的同源表达及酶学性质 *[J]. 中国生物工程杂志, 2019, 39(1): 38-45.
[12] 程功,焦思明,任立世,冯翠,杜昱光. 枯草芽孢杆菌壳聚糖酶水解制备低脱乙酰度壳寡糖及其组分分析 *[J]. 中国生物工程杂志, 2018, 38(9): 19-26.
[13] 唐健雪,肖永乐,彭俊杰,赵世纪,万小平,高荣. 融合抗菌肽基因在重组毕赤酵母的表达及体外活性研究 *[J]. 中国生物工程杂志, 2018, 38(6): 9-16.
[14] 张潘潘,许延吉,王之可,刘晓,李素霞. 重组猪胰蛋白酶及其R122位点突变体在毕赤酵母中的高效表达及其性质研究[J]. 中国生物工程杂志, 2018, 38(5): 56-65.
[15] 黄鹏,杜望春,施尉珺,饶玉良,孙庆文,张宁. 人源类溶菌酶蛋白6的功能研究及生理特性分析 *[J]. 中国生物工程杂志, 2018, 38(3): 1-8.