Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (10): 52-61    DOI: 10.13523/j.cb.2106019
技术与方法     
毕赤酵母底盘芳香族氨基酸合成途径改造生产肉桂酸及对香豆酸*
陈鑫洁1,钱芷兰1,刘启1,赵清2,张元兴1,蔡孟浩1,**()
1 华东理工大学 生物反应器工程国家重点实验室 上海 200237
2 中国科学院上海辰山植物科学研究中心 上海市资源植物功能基因组学重点实验室 上海 201602
Modification of Aromatic Amino Acid Synthetic Pathway in Pichia pastoris to Produce Cinnamic Acid and ρ-Coumaric Acid
CHEN Xin-jie1,QIAN Zhi-lan1,LIU Qi1,ZHAO Qing2,ZHANG Yuan-xing1,CAI Meng-hao1,**()
1 State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, Shanghai 200237, China
2 Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai Key Laboratoryof Plant Functional Genomics and Resources, Shanghai 201602, China
 全文: PDF(1018 KB)   HTML
摘要:

目的:改造毕赤酵母使其异源合成类黄酮生物合成途径的重要中间体肉桂酸、对香豆酸,并优化前体芳香族氨基酸生物合成途径以提高毕赤酵母的生产能力。方法:在毕赤酵母GS115中利用乙醇诱导型人工转录系统表达Rhodotorula glutinis来源的苯丙氨酸解氨酶,并在该重组菌株中分别过表达胞内芳香族氨基酸生物合成途径中的关键酶或其突变体以进行优化。结果:异源表达苯丙氨酸解氨酶可使毕赤酵母将自身产生的L-苯丙氨酸、L-酪氨酸转化为肉桂酸(38.8 mg/L)、对香豆酸(34.2 mg/L),而通过过表达相关酶进行优化,最终肉桂酸和对香豆酸的产量分别达到124.1 mg/L和302.0 mg/L。结论:利用新的异源宿主毕赤酵母成功合成了肉桂酸、对香豆酸,并对胞内的芳香族氨基酸生物合成途径进行了优化,表明毕赤酵母具有生产黄酮类化合物的应用潜力,也为其他芳香族氨基酸衍生物或植物化合物在毕赤酵母中的异源合成奠定了基础。

关键词: 毕赤酵母芳香族氨基酸肉桂酸对香豆酸    
Abstract:

Objective: The Pichia pastoris strain was engineered to heterologously synthesize cinnamic acid and ρ-coumaric acid,which were important intermediates of flavonoid biosynthetic pathway. The biosynthetic pathway of precursors aromatic amino acids was optimized to improve the production capacity of P. pastoris. Methods: Phenylalanine ammonia lyase from Rhodotorula glutinis was expressed in P. pastoris GS115 by ethanol induced artificial transcription system, and the key enzymes or their mutants in the biosynthetic pathway of intracellular aromatic amino acids were overexpressed in the recombinant strain. Results: Heterologous expression of phenylalanine ammonia lyase could convert L-phenylalanine and L-tyrosine produced by P. pastoris into cinnamic acid (38.8 mg/L) and ρ-coumaric acid (34.2 mg/L). Through overexpression of related enzymes, the yields of cinnamic acid and ρ-coumaric acid reached 124.1 mg/L and 302.0 mg/L, respectively. Conclusion: Cinnamic acid and ρ-coumaric acid were successfully synthesized by P. pastoris, and the biosynthetic pathway of intracellular aromatic amino acids was optimized. It shows that P. pastoris has the application potential to produce flavonoids, and it also lays a foundation for the heterologous synthesis of other aromatic amino acid derivatives or plant compounds in P. pastoris.

Key words: Pichia pastoris    Aromatic amino acid    Cinnamic acid    ρ-Coumaric acid
收稿日期: 2021-06-11 出版日期: 2021-11-08
ZTFLH:  Q789  
基金资助: * 国家重点研发计划(2018YFC1706202)
通讯作者: 蔡孟浩     E-mail: cmh022199@ecust.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈鑫洁
钱芷兰
刘启
赵清
张元兴
蔡孟浩

引用本文:

陈鑫洁,钱芷兰,刘启,赵清,张元兴,蔡孟浩. 毕赤酵母底盘芳香族氨基酸合成途径改造生产肉桂酸及对香豆酸*[J]. 中国生物工程杂志, 2021, 41(10): 52-61.

CHEN Xin-jie,QIAN Zhi-lan,LIU Qi,ZHAO Qing,ZHANG Yuan-xing,CAI Meng-hao. Modification of Aromatic Amino Acid Synthetic Pathway in Pichia pastoris to Produce Cinnamic Acid and ρ-Coumaric Acid. China Biotechnology, 2021, 41(10): 52-61.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2106019        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I10/52

Primers Sequence (5'→3')
sRgPAL_kz_F CAACTAATTATTCGAACTCGAGTTCGAAATGGCTCCTTCTGT
sRgPAL_kz_R AACTCAATGATGATGATGATGATGGTCGACAGGTACCATGGCCATCATC
ICL1-KZ-F GAGACCTTCGTTTGTGCGGATCCAGATCTTCATCTAACACTTTGTATAGC
ICL1-KZ-R GCTATGGTGTGTGGGGGATCCTCTCACTTAATCTTCTGTACTCTGAAGAG
DAHPS1-F AATCAATTGAACAACTATTTCGAAATGACCTCCACACCAGTTCAAGAAGAATACG
DAHPS1-R AACTCAATGATGATGATGATGATGGTCGACAGCAGCGTTCTTTAATGCTCTT
DAHPS2-F AATCAATTGAACAACTATTTCGAAATGACAGTACAAGAGGTCGACC
DAHPS2-R AACTCAATGATGATGATGATGATGGTCGACTGTAATGAGTTTCAATGAATTACTTATTTTTACCTCT
DAHPS3-F AATCAATTGAACAACTATTTCGAAATGTTCATTCAAAACGATCATGTCG
DAHPS3-R AACTCAATGATGATGATGATGATGGTCGACATTCTTGAGATTACGACGTTCAATGAC
CM-F AATCAATTGAACAACTATTTCGAAATGGAGTTCAAGAAACCCGC
CM-R AACTCAATGATGATGATGATGATGGTCGACCCACAAGCTGTTGGATAATAGTCT
PD-F AATCAATTGAACAACTATTTCGAAATGACTAATATAGCATATTTGGGGCCCCAGGGAACGTATTC
PD-R AACTCAATGATGATGATGATGATGGTCGACGTCCCAGTACTTTTTGGACCG
1_ARO3_KZ_F AATCAATTGAACAACTATTTCGAAATGTTCATTAAAAACGATCACGCC
2_ARO3_KZ_R AACTCAATGATGATGATGATGATGGTCGACTTTTTTCAAGGCCTTTCTTCTGTTTCT
1_ARO4_KZ_F AATCAATTGAACAACTATTTCGAAATGAGTGAATCTCCAATGTTCGC
2_ARO4_KZ_R AACTCAATGATGATGATGATGATGGTCGACTTTCTTGTTAACTTCTCTTCTTTGTCTGAC
1_ARO7_KZ_F AATCAATTGAACAACTATTTCGAAATGGATTTCACAAAACCAGAAACTG
2_ARO7_KZ_R AACTCAATGATGATGATGATGATGGTCGACCTCTTCCAACCTTCTTAGCAAGTAT
4ARO3~K222L-KZ-F TTCTGTCACATTGCCAGGTGTCACTGCTATCGTGGGCAC
GAPZa-KZ-R TGGCCTTTTGCTCACATGTTGGTCTCCAGCTTGCAAATTAAAGC
GAPZa-KZ-F AACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCG
3ARO3~K222L-KZ-R CACCTGGCAATGTGACAGAAAGGAAGTAATGTTCATGTGCAGC
4ARO4~K229L-KZ-F ACTTTGCATGGTGTTGCTGCTATCACCACTACTAAGGGTAACGAACA
3ARO4~K229L-KZ-R GCAGCAACACCATGCAAAGTAACACCCATGAAATGGTGAGAAT
4ARO7~G141S-KZ-F AACTTCTCTTCTGTTGCCACTAGAGATATAGAATGTTTGCAAAGCTTGAG
3ARO7~G141S-KZ-R GTGGCAACAGAAGAGAAGTTATTCTTATCATCACCATCTCTTTTCGAAAT
DAHPS3~K222L-KZ-F CATTACCAGGAGTTGTGGCTATTGTCGGTACCGAAGGAAATG
DAHPS3~K222L-KZ-R AGCCACAACTCCTGGTAATGTGACAGACAGGAAATGGTGAGG
BamH IupGAP-KZ-F GTACGCTGCAGGTCGACGGATCAGGTCATGCATGAGATCAGATCT
AOX1TT-KZ-R GCACAAACGAAGGTCTCACTTAA
TTupGAP-KZ-F TTAAGTGAGACCTTCGTTTGTGCGGATTTTGGTCATGCATGAGATC
doTTBgl II-KZ-R AAGGCAAGCTAAACAGATCTGGCGCGCCAGAAACATTTTGAAGCTATGGTGTG
TTBamH IupGAP-KZ-F ACCTTCGTTTGTGCGGATCGGTCATGCATGAGATCAGATCT
AOXITT(BamH I)-KZ-R TTGAAGCTATGGTGTGTGGGGGATCCGCACAAACGAAGGTCTCACTT
TTBamH IupGAP-KZ-F2 ACCTTCGTTTGTGCGGATCCCGAAAACTCACGTTAAGGGATTTT
AOXITT(BamH I)-KZ-R2 TTGAAGCTATGGTGTGTGGGGGATCCTCTGGAAGAGTAAAAAAGGAGTAGAAACAT
CM-R AACTCAATGATGATGATGATGATGGTCGACCCACAAGCTGTTGGATAATAGTCT
PD-F AATCAATTGAACAACTATTTCGAAATGACTAATATAGCATATTTGGGGCCCCAGGGAACGTATTC
PD-R AACTCAATGATGATGATGATGATGGTCGACGTCCCAGTACTTTTTGGACCG
1_ARO3_KZ_F AATCAATTGAACAACTATTTCGAAATGTTCATTAAAAACGATCACGCC
2_ARO3_KZ_R AACTCAATGATGATGATGATGATGGTCGACTTTTTTCAAGGCCTTTCTTCTGTTTCT
表1  本研究所用引物
Time (min) A%
(0.1% formic acid)
B%
(100% acetonitrile)
0 80 20
20 45 55
30 0 100
35 0 100
37 80 20
41 80 20
表2  HPLC检测梯度洗脱程序
图1  重组毕赤酵母合成肉桂酸及对香豆酸的胞内代谢途径
图2  毕赤酵母菌株GS115及P.p/ESAD-Rg摇瓶诱导96h发酵液样品的HPLC检测
图3  毕赤酵母菌株P.p/ESAD-Rg在不同浓度的芳香族氨基酸作为前体时的摇瓶发酵结果
图4  过表达毕赤酵母来源的关键酶对芳香族氨基酸合成途径的优化效果
图5  过表达酿酒酵母来源的关键酶的突变体对芳香族氨基酸合成途径的优化效果
[1] 郭欣慰, 黄丛林, 吴忠义, 等. 植物类黄酮生物合成的分子调控. 北方园艺, 2011(4): 204-207.
Guo X W, Huang C L, Wu Z Y, et al. Molecular regulation of plant flavonoid biosynthesis pathway. Northern Horticulture, 2011(4): 204-207.
[2] Wang L, Song J K, Liu A L, et al. Research progress of the antiviral bioactivities of natural flavonoids. Natural Products and Bioprospecting, 2020, 10(5): 271-283.
doi: 10.1007/s13659-020-00257-x pmid: 32948973
[3] Liu Q L, Yu T, Li X W, et al. Rewiring carbon metabolism in yeast for high level production of aromatic chemicals. Nature Communications, 2019, 10(1): 4976.
doi: 10.1038/s41467-019-12961-5
[4] Li J H, Tian C F, Xia Y H, et al. Production of plant-specific flavones baicalein and scutellarein in an engineered E. coli from available phenylalanine and tyrosine. Metabolic Engineering, 2019, 52: 124-133.
doi: 10.1016/j.ymben.2018.11.008
[5] Williams I S, Chib S, Nuthakki V K, et al. Biotransformation of chrysin to baicalein: selective C6-hydroxylation of 5, 7-dihydroxyflavone using whole yeast cells stably expressing human CYP1A1 enzyme. Journal of Agricultural and Food Chemistry, 2017, 65(34): 7440-7446.
doi: 10.1021/acs.jafc.7b02690 pmid: 28782952
[6] Liu X N, Cheng J, Zhu X X, et al. De novo biosynthesis of multiple pinocembrin derivatives in Saccharomyces cerevisiae. ACS Synthetic Biology, 2020, 9(11): 3042-3051.
doi: 10.1021/acssynbio.0c00289
[7] Gasser B, Mattanovich D. A yeast for all seasons-Is Pichia pastoris a suitable chassis organism for future bioproduction. FEMS Microbiology Letters, 2018, 365(17): 181.
[8] Winkel-Shirley B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiology, 2001, 126(2): 485-493.
pmid: 11402179
[9] Braus G H. Aromatic amino acid biosynthesis in the yeast Saccharomyces cerevisiae: a model system for the regulation of a eukaryotic biosynthetic pathway. Microbiological Reviews, 1991, 55(3): 349-370.
doi: 10.1128/mr.55.3.349-370.1991 pmid: 1943992
[10] Liu X Z, Niu H, Li Q, et al. Metabolic engineering for the production of l-phenylalanine in Escherichia coli. 3 Biotech, 2019, 9(3): 85.
doi: 10.1007/s13205-019-1619-6
[11] Liu Y F, Xu Y R, Ding D Q, et al. Genetic engineering of Escherichia coli to improve L-phenylalanine production. BMC Biotechnology, 2018, 18(1): 5.
doi: 10.1186/s12896-018-0418-1
[12] Reifenrath M, Boles E. Engineering of hydroxymandelate synthases and the aromatic amino acid pathway enables de novo biosynthesis of mandelic and 4-hydroxymandelic acid with Saccharomyces cerevisiae. Metabolic Engineering, 2018, 45: 246-254.
doi: S1096-7176(17)30407-X pmid: 29330068
[13] Hassing E J, de Groot P A, Marquenie V R, et al. Connecting central carbon and aromatic amino acid metabolisms to improve de novo 2-phenylethanol production in Saccharomyces cerevisiae. Metabolic Engineering, 2019, 56: 165-180.
doi: 10.1016/j.ymben.2019.09.011
[14] Liu Y Q, Bai C X, Liu Q, et al. Engineered ethanol-driven biosynthetic system for improving production of acetyl-CoA derived drugs in Crabtree-negative yeast. Metabolic Engineering, 2019, 54: 275-284.
doi: 10.1016/j.ymben.2019.05.001
[15] Chen Y C, Shen S C, Chow J M, et al. Flavone inhibition of tumor growth via apoptosis in vitro and in vivo. International Journal of Oncology, 2004, 25(3): 661-670.
[16] Way T D, Kao M C, Lin J K. Apigenin induces apoptosis through proteasomal degradation of HER2/neu in HER2/neu-overexpressing breast cancer cells via the phosphatidylinositol 3-kinase/Akt-dependent pathway. Journal of Biological Chemistry, 2004, 279(6): 4479-4489.
doi: 10.1074/jbc.M305529200
[17] Song J W, Long J Y, Xie L, et al. Applications, phytochemistry, pharmacological effects, pharmacokinetics, toxicity of Scutellaria baicalensis Georgi. and its probably potential therapeutic effects on COVID-19: a review. Chinese Medicine, 2020, 15: 102.
doi: 10.1186/s13020-020-00384-0
[18] Wu J J, Du G C, Zhou J W, et al. Metabolic engineering of Escherichia coli for (2S)-pinocembrin production from glucose by a modular metabolic strategy. Metabolic Engineering, 2013, 16: 48-55.
doi: 10.1016/j.ymben.2012.11.009
[19] Zhao Q, Cui M Y, Levsh O, et al. Two CYP82D enzymes function as flavone hydroxylases in the biosynthesis of root-specific 4'-deoxyflavones in Scutellaria baicalensis. Molecular Plant, 2018, 11(1): 135-148.
doi: 10.1016/j.molp.2017.08.009
[20] Hwang E I, Kaneko M, Ohnishi Y, et al. Production of plant-specific flavanones by Escherichia coli containing an artificial gene cluster. Applied and Environmental Microbiology, 2003, 69(5): 2699-2706.
doi: 10.1128/AEM.69.5.2699-2706.2003 pmid: 12732539
[21] Ji D N, Li J H, Xu F L, et al. Improve the biosynthesis of baicalein and scutellarein via manufacturing self-assembly enzyme reactor in vivo. ACS Synth Biol, 2021, 10(5): 1087-1094.
doi: 10.1021/acssynbio.0c00606
[22] Yan Y J, Kohli A, Koffas M A G. Biosynthesis of natural flavanones in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2005, 71(9): 5610-5613.
doi: 10.1128/AEM.71.9.5610-5613.2005
[23] McCandliss R J, Poling M D, Herrmann K M. 3-Deoxy-D-arabino-heptulosonate 7-phosphate synthase. Purification and molecular characterization of the phenylalanine-sensitive isoenzyme from Escherichia coli. Journal of Biological Chemistry, 1978, 253(12): 4259-4265.
pmid: 26682
[24] Liu S P, Xiao M R, Zhang L, et al. Production of l-phenylalanine from glucose by metabolic engineering of wild type Escherichia coli W3110. Process Biochemistry, 2013, 48(3): 413-419.
doi: 10.1016/j.procbio.2013.02.016
[1] 陈中伟,郑璞,陈鹏程,吴丹. 耐热植酸酶突变体的筛选及性质研究 *[J]. 中国生物工程杂志, 2021, 41(2/3): 30-37.
[2] 石鹏程, 纪晓俊. 酵母系统表达人表皮生长因子研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 72-79.
[3] 田园,李艳玲. 基于重组毕赤酵母的fusaruside生物合成 *[J]. 中国生物工程杂志, 2019, 39(7): 8-14.
[4] 彭强强,刘启,徐名强,张元兴,蔡孟浩. 新型重组毕赤酵母产人胰岛素前体的表达工艺研究 *[J]. 中国生物工程杂志, 2019, 39(7): 48-55.
[5] 严建,贾禄强,丁健,史仲平. 甲醇周期诱导控制强化毕赤酵母生产猪α干扰素 *[J]. 中国生物工程杂志, 2019, 39(6): 32-40.
[6] 姚银,闵琪,熊海容,张莉. 木聚糖酶和甘露聚糖酶在毕赤酵母中的共表达及产酶分析 *[J]. 中国生物工程杂志, 2019, 39(3): 37-45.
[7] 张文玉,魏东升,钱江潮. 共表达PDI1MDH1HAC1基因对重组毕赤酵母分泌表达葡糖氧化酶的影响 *[J]. 中国生物工程杂志, 2019, 39(10): 24-33.
[8] 王彤,徐岩,喻晓蔚. 毕赤酵母Kex2蛋白酶的同源表达及酶学性质 *[J]. 中国生物工程杂志, 2019, 39(1): 38-45.
[9] 程功,焦思明,任立世,冯翠,杜昱光. 枯草芽孢杆菌壳聚糖酶水解制备低脱乙酰度壳寡糖及其组分分析 *[J]. 中国生物工程杂志, 2018, 38(9): 19-26.
[10] 唐健雪,肖永乐,彭俊杰,赵世纪,万小平,高荣. 融合抗菌肽基因在重组毕赤酵母的表达及体外活性研究 *[J]. 中国生物工程杂志, 2018, 38(6): 9-16.
[11] 张潘潘,许延吉,王之可,刘晓,李素霞. 重组猪胰蛋白酶及其R122位点突变体在毕赤酵母中的高效表达及其性质研究[J]. 中国生物工程杂志, 2018, 38(5): 56-65.
[12] 黄鹏,杜望春,施尉珺,饶玉良,孙庆文,张宁. 人源类溶菌酶蛋白6的功能研究及生理特性分析 *[J]. 中国生物工程杂志, 2018, 38(3): 1-8.
[13] 焦思明,程功,张毓宸,冯翠,任立世,李建军,杜昱光. 里氏木霉几丁质酶表达及其水解产物组成与结构分析 *[J]. 中国生物工程杂志, 2018, 38(10): 30-37.
[14] 黄鹏,阎丽萍,张宁,石金磊. 利用GAP启动子在毕赤酵母中组成型表达人鹅型溶菌酶2 *[J]. 中国生物工程杂志, 2018, 38(10): 55-63.
[15] 张伟, 刘夺, 李炳志, 元英进. 产对香豆酸酿酒酵母菌株的构建及优化[J]. 中国生物工程杂志, 2017, 37(9): 89-97.