Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (3): 37-45    DOI: 10.13523/j.cb.20190306
研究报告     
木聚糖酶和甘露聚糖酶在毕赤酵母中的共表达及产酶分析 *
姚银,闵琪,熊海容,张莉()
中南民族大学生命科学学院 武汉 430074
Co-expression of xylanase and mannanase in Pichia pastoris and the enzymatic analyses
Yin YAO,Qi MIN,Hai-rong XIONG,Li ZHANG()
College of Life Science,South-Central University for Nationalities,Wuhan 430074,China
 全文: PDF(917 KB)   HTML
摘要:

木聚糖酶和甘露聚糖酶是两种重要的半纤维素酶,也是两种重要的饲用酶制剂,通过毕赤酵母表达系统中的体外串联表达盒构建多拷贝的方法构建了木聚糖酶DSB和甘露聚糖酶ManA共表达重组质粒pPICZαA/DSB-ManA,将该重组质粒电转化至宿主菌毕赤酵母X33中获得共表达两种酶的重组菌X33/ DSB-ManA,实现了两种酶的共分泌表达,经诱导表达后木聚糖酶和甘露聚糖酶的酶活分别为273.6 U/ml和256.8 U/ml,为单独表达重组菌X33/DSB和X33/ManA酶活的30.4%和73.4%。酶学性质的分析显示DSB和ManA的最适反应温度均为75℃,在45℃75℃范围内具有较好的温度稳定性,酶活可保持最高酶活的60%以上;DSB最适pH为6.5,ManA最适pH为6.0,在pH 3.0、40℃条件下,ManA处理1 h能保持最高酶活的80%以上,DSB处理1 h时能保持最高酶活的50%以上;DSB和ManA对多种金属离子和化学试剂(浓度为1 mM)具有较好的耐受性,均可保留60%以上的酶活力。通过单一菌株成功完成了不同酶的共表达,为复合酶饲料添加剂的生产和应用研究提供了一定的理论依据。

关键词: 木聚糖酶甘露聚糖酶毕赤酵母共表达酶学特性    
Abstract:

Xylanase and mannanase are two important hemicellulases and feed enzyme preparations. Construction method of in vitro multimers in Pichia pastoris expression system has been used to construct recombinant plasmid pPICZαA/DSB-ManA which contained both DSB gene and ManA gene. Then, pPICZαA/DSB-ManA was transformed to host cells Pichia pastoris X33 by electroporation to obtain the co-expression recombinant strain X33/DSB-ManA. In shake-flask cultivation, xylanase activity and mannanase activity in the supernatant were 273.6 U/ml and 256.8 U/ml that reached 30.4% and 73.4% activity compared to X33/DSB and X33/ManA, respectively. Properties of the mixed enzyme suggested that the optimal reaction temperature for DSB and ManA is 75℃. Both xylanase and mannanase showed more than 60% activity across temperature ranges 45°C to 75°C. The optimal reaction pH value of DSB and ManA were 6.5 and 6.0, respectively. After incubation 1 hour under the pH3.0 and 40℃ treatment condition, mannanase activity of ManA displayed greater than 80% activity and xylanase activity of DSB revealed more than 50% activity. Meanwhile, DSB and ManA have shown good tolerance to a variety of metal ions and chemical reagents. Both enzyme activities could keep over 60% activity when the treatment concentration of different metal ions and chemical reagents was 1 millimole. Xylanase DSB and mannanase ManA have been co-expressed in Pichia pastoris successfully. The successful expression of the two enzymes of the recombinant strain could offer the theory basis for production and application of compound enzyme in the animal feed.

Key words: Xylanase    Mannanase    Pichia    pastoris    Co-expression    Enzymatic    characteristics
收稿日期: 2018-09-06 出版日期: 2019-04-12
ZTFLH:  Q789  
基金资助: * 湖北省技术创新专项重大项目资助项目(2018ABA093)
通讯作者: 张莉     E-mail: serena20112014@mail.scuec.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
姚银
闵琪
熊海容
张莉

引用本文:

姚银,闵琪,熊海容,张莉. 木聚糖酶和甘露聚糖酶在毕赤酵母中的共表达及产酶分析 *[J]. 中国生物工程杂志, 2019, 39(3): 37-45.

Yin YAO,Qi MIN,Hai-rong XIONG,Li ZHANG. Co-expression of xylanase and mannanase in Pichia pastoris and the enzymatic analyses. China Biotechnology, 2019, 39(3): 37-45.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20190306        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I3/37

基因 引物 引物序列(5'→3') 酶切位点
DSB P1 CCGGAATTCTGCGCAACCCCCAACTCGGAG EcoR I
P2 ATAGCGGCCGCTTAGCCCACGTCAGCAACGG Not I
ManA P3 TATGGTACCTCTGGTGGACCAAACTTGTCTG Kpn
P4 CCGTCTAGAAGAGGTACCGATAGCGTTAGTTC Xba
表1  PCR扩增引物序列
图1  共表达载体pPICZαA/DSB-ManA的构建示意图
图2  共表达重组质粒pPICZαA/DSB-ManA构建过程中的电泳图
图3  单独表达重组菌发酵144 h产两种酶的酶活力
图4  X33/DSB-ManA发酵过程的生长曲线和产木聚糖酶与甘露聚糖酶的酶活曲线
图5  X33/DSB-ManA发酵上清液的SDS-PAGE分析
图6  X33/DSB-ManA产木聚糖酶(pH6.5)和甘露聚糖酶(pH6.0)的最适温度及热稳定性
图7  X33/DSB-ManA产木聚糖酶和甘露聚糖酶的最适pH(75℃)及pH稳定性
浓度(mmol/L)

金属离子
0 0.5 1
Cu2+ 100±1.95 97.22±4.67 83.71±2.81
Fe3+ 100±2.49 105.75±3.16 86.12±6.36
Mn2+ 100±7.52 65.03±1.21 69.79±1.27
Co2+ 100±4.52 104.93±5.30 87.15±3.82
Mg2+ 100±2.93 99.83±4.24 107.56±3.00
Li+ 100±2.85 103.43±3.62 101.33±6.26
Ni2+ 100±4.03 101.38±7.19 102.36±4.31
Ca2+ 100±5.58 121.27±2.82 131.57±4.88
Pb2+ 100±3.94 95.74±2.49 87.14±5.91
SDS 100±4.28 97.74±4.89 99.73±1.85
EDTA 100±2.33 85.06±4.31 90.56±6.99
巯基乙醇 100±2.58 93.29±7.01 87.40±5.55
表2  不同化学试剂及金属离子对甘露聚糖酶活力的影响
浓度(mmol/L)

金属离子
0 0.5 1
Cu2+ 100±0.26 91.55±0.38 73.18±0.37
Fe3+ 100±0.76 98.29±0.33 97.20±0.14
Mn2+ 100±0.77 64.09±0.54 67.89±0.77
Co2+ 100±0.68 117.13±0.49 96.80±0.74
Mg2+ 100±0.61 90.93±0.75 91.78±1.07
Li+ 100±0.81 97.80±0.54 96.99±0.33
Ni2+ 100±0.45 99.16±0.63 96.69±0.56
Ca2+ 100±0.50 92.79±0.71 96.04±0.35
Pb2+ 100±0.86 92.62±0.77 87.71±1.09
SDS 100±2.22 84.89±0.92 78.51±0.58
EDTA 100±0.50 89.82±1.05 84.04±1.21
巯基乙醇 100±0.61 99.47±2.29 100.49±1.67
表3  不同化学试剂及金属离子对木聚糖酶活力的影响
[1] Collins T, Gerday C, Feller G . Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiology Reviews, 2005,29(1):3-23.
doi: 10.1016/j.femsre.2004.06.005
[2] Pollet A, Delcour J A, Courtin C M . Structural determinants of the substrate specificities of xylanases from different glycoside hydrolase families. Critical Reviews in Biotechnology, 2010,30(3):176-191.
doi: 10.1078/0065-1281-00679 pmid: 20225927
[3] Le Nours J, Anderson L, Stoll D , et al. The structure and characterization of a modular endo-β-1, 4-mannanase from Cellulomonas fimi. Biochemistry, 2005,44(38):12700-12708.
doi: 10.1021/bi050779v
[4] Couturier M, Roussel A, Rosengren A , et al. Structural and biochemical analyses of glycoside hydrolase families 5 and 26 beta-(1, 4)-mannanases from Podospora anserina reveal differences upon manno-oligosaccharides catalysis. Journal of Biological Chemistry, 2013,288(20):14624-14635.
doi: 10.1074/jbc.M113.459438
[5] 魏川子, 王兆斌, 李燕蒙 , 等. 半纤维素酶在畜禽饲料中的应用及研究进展. 畜牧与饲料科学, 2015,36(12):44-46.
Wei C Z, Wang Z B, Li Y M , et al. Application and research progress of hemicellulases in animal feed. Animal Husbandry and Feed Science, 2015,36(12):44-46.
[6] 黄生平, 汪昌丽, 张桂敏 , 等. 植酸酶和甘露聚糖酶双功能毕赤酵母工程菌的构建和产酶分析. 微生物学报, 2007,47(2):280-284.
doi: 10.3321/j.issn:0001-6209.2007.02.019
Huang S P, Wang C L, Zhang G M , et al. Construction of a double functional recombinant strainof Pichia pastoris co-expressing phytase and mannanase and the enzymatic analyses. Acta microbiologica Sinica, 2007,47(2):280-284.
doi: 10.3321/j.issn:0001-6209.2007.02.019
[7] 吴振芳, 唐自钟, 陈惠 , 等. 毕赤酵母中植酸酶和内切葡聚糖酶共表达菌株的构建及其高效表达. 生物工程学报, 2010,26(5):616-622.
Wu Z F, Tang Z Z, Chen H , et al. Construction of Pichia pastoris recombinant strain capable of over-expressing phytase and endoglucanase. Chinese Journal of Biotechnology, 2010,26(5):616-622.
[8] Damasceno L M, Huang C J, Batt C A . Protein secretion in Pichia pastoris and advances in protein production. Applied Microbiology and Biotechnology, 2012,93(1):31-39.
doi: 10.1007/s00253-011-3654-z pmid: 22057543
[9] Rabert C, Weinacker D, Pessoa A Jr , et al. Recombinants proteins for industrial uses: Utilization of Pichia pastoris expression system. Brazilian Journal of Microbiology, 2013,44(2):351-356.
doi: 10.1590/S1517-83822013005000041
[10] Yu H Y, Sun Y M, Wang W , et al. Purification and properties of Bacillus subtilis SA-22 Endo-1,4-β-D-mannanase. Chinese Journal of Biotechnology, 2003,19(3):327-331.
[11] 张巍, 王亚伟, 陈丰 , 等. 一株全基因合成耐热甘露聚糖酶的表达及酶学性质分析. 中国生物工程杂志, 2014,34(8):41-46.
doi: 10.13523/j.cb.20140807
Zhang W, Wang Y W, Chen F , et al. Gene synthesis, expression and characterization of a thermostable endo-β-1,4-mannanase. China Biotechnology, 2014,34(8):41-46.
doi: 10.13523/j.cb.20140807
[12] 田军辉 . β-甘露聚糖酶对不同蛋白饲料的体外酶解效果及其在断奶仔猪低能量日粮中的应用研究. 河南:河南农业大学, 2014.
Tian J H . The effects of β-Mannanase on protein feed stuffs in vitro and study on weaned piglets in low energy diets. Henan: Henan Agricultural University, 2014.
[13] 郭玉光, 杜红方, 王敏 , 等. 饲粮中添加复合酶对仔猪生长性能, 血液生化指标和养分消化率的影响. 中国畜牧杂志, 2018,54(2):65-68.
doi: 10.19556/j.0258-7033.2018-02-065
Guo Y G, Du H F, Wang M , et al. Effects of compound enzymes added to diet on growth performance, blood biochemical indexes and nutrient digestibility of piglets. Chinese Journal of Animal Science, 2018,54(2):65-68.
doi: 10.19556/j.0258-7033.2018-02-065
[14] 周雪梅, 杨在宾, 姜淑贞 , 等. 复合酶制剂对蛋鸡生产性能, 蛋品质, 肠道健康微生物及养分利用率的影响. 家禽科学, 2017 ( 11):7-12.
doi: 10.3969/j.issn.1673-1085.2017.11.002
Zhou X M, Yang Z B, Jiang S Z , et al. Effects of compound enzyme preparation on production performance, egg quality, intestinal health microorganism and nutrient utilization rate of laying hens. Journal of Poultry Science, 2017 ( 11):7-12.
doi: 10.3969/j.issn.1673-1085.2017.11.002
[15] 谭子超, 刘浩民, 薛梅 , 等. 小麦-豆粕型饲粮添加复合酶制剂对肉鸡肠道微生物菌群和影响. 中国饲料, 2018 ( 9):19-24.
doi: 10.15906/j.cnki.cn11-2975/s.20180904
Tan Z C, Liu H M, Xue M , et al. Effects of different levels of compound enzyme preparation added in wheat-soybean meal diet on broiler’s gastrointestinal microbial flora and chyme acidity. China Feed, 2018 ( 9):19-24.
doi: 10.15906/j.cnki.cn11-2975/s.20180904
[16] Cozannet P, Meur M, Batut H , et al. Enzyme complex improves performance of broilers fed wheat-and soybean-based diets with graded density//Optimum definition,Australian Poultry Science Symposium. Sydney: Poultry Research Foundation, 2013: 68-71.
[17] Beauchemin K A, Colombatto D, Morgavi D P . A rationale for the development of feed enzyme products for ruminants. Canadian Journal of Animal Science, 2004,84(1):23-36.
doi: 10.1354/vp.39-5-565
[18] 刘高磊, 胡蝶, 邬敏辰 , 等. 内切葡聚糖酶与木聚糖酶在毕赤酵母中的共分泌表达. 食品与生物技术学报, 2015,34(3):253-259.
Liu G L, Hu D, Wu M C , et al. Co-expression of endoglucanase and xylanase in Pichia pastoris. Journal of Food Science and Biotechnology, 2015,34(3):253-259.
[19] 马蓉, 徐昊, 丁锐 , 等. 大肠杆菌多基因共表达策略. 中国生物工程杂志, 2012,32(04):117-122.
Ma R, Xu H, Ding R , et al. The strategy of gene coexpression in Escherichia Coli. China Biotechnology, 2012,32(4):117-122.
[1] 贺立恒,张毅,张洁,任豫超,解红娥,唐锐敏,贾小云,武宗信. 基于转录组和WGCNA的甘薯花青素合成相关基因共表达网络的构建及核心基因的挖掘*[J]. 中国生物工程杂志, 2021, 41(9): 27-36.
[2] 陈中伟,郑璞,陈鹏程,吴丹. 耐热植酸酶突变体的筛选及性质研究 *[J]. 中国生物工程杂志, 2021, 41(2/3): 30-37.
[3] 周惠颖,周翠霞,张婷,王雪雨,张会图,冀颐之,路福平. 强化底物利用酶系表达,提升地衣芽孢杆菌生产碱性蛋白酶性能[J]. 中国生物工程杂志, 2021, 41(2/3): 53-62.
[4] 陈鑫洁,钱芷兰,刘启,赵清,张元兴,蔡孟浩. 毕赤酵母底盘芳香族氨基酸合成途径改造生产肉桂酸及对香豆酸*[J]. 中国生物工程杂志, 2021, 41(10): 52-61.
[5] 石鹏程, 纪晓俊. 酵母系统表达人表皮生长因子研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 72-79.
[6] 田园,李艳玲. 基于重组毕赤酵母的fusaruside生物合成 *[J]. 中国生物工程杂志, 2019, 39(7): 8-14.
[7] 李吉萍,包昌杰,陈光,张斯童. 木聚糖酶异源表达的研究进展 *[J]. 中国生物工程杂志, 2019, 39(7): 91-99.
[8] 彭强强,刘启,徐名强,张元兴,蔡孟浩. 新型重组毕赤酵母产人胰岛素前体的表达工艺研究 *[J]. 中国生物工程杂志, 2019, 39(7): 48-55.
[9] 严建,贾禄强,丁健,史仲平. 甲醇周期诱导控制强化毕赤酵母生产猪α干扰素 *[J]. 中国生物工程杂志, 2019, 39(6): 32-40.
[10] 张文玉,魏东升,钱江潮. 共表达PDI1MDH1HAC1基因对重组毕赤酵母分泌表达葡糖氧化酶的影响 *[J]. 中国生物工程杂志, 2019, 39(10): 24-33.
[11] 任莉琼,吴敬,陈晟. 共表达N-乙酰转移酶提高Aspergillus nidulans α-葡糖苷酶在毕氏酵母中的表达研究 *[J]. 中国生物工程杂志, 2019, 39(10): 75-81.
[12] 王彤,徐岩,喻晓蔚. 毕赤酵母Kex2蛋白酶的同源表达及酶学性质 *[J]. 中国生物工程杂志, 2019, 39(1): 38-45.
[13] 程功,焦思明,任立世,冯翠,杜昱光. 枯草芽孢杆菌壳聚糖酶水解制备低脱乙酰度壳寡糖及其组分分析 *[J]. 中国生物工程杂志, 2018, 38(9): 19-26.
[14] 唐健雪,肖永乐,彭俊杰,赵世纪,万小平,高荣. 融合抗菌肽基因在重组毕赤酵母的表达及体外活性研究 *[J]. 中国生物工程杂志, 2018, 38(6): 9-16.
[15] 张潘潘,许延吉,王之可,刘晓,李素霞. 重组猪胰蛋白酶及其R122位点突变体在毕赤酵母中的高效表达及其性质研究[J]. 中国生物工程杂志, 2018, 38(5): 56-65.