Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (6): 9-16    DOI: 10.13523/j.cb.20180602
研究报告     
融合抗菌肽基因在重组毕赤酵母的表达及体外活性研究 *
唐健雪,肖永乐,彭俊杰,赵世纪,万小平,高荣()
四川大学生命科学学院 生物资源与生态环境教育部重点实验室 四川省动物疫病预防与食品安全重点实验室 成都 610065
Expression of Fusion Antibacterial Peptide in Recombinant Pichia pastoris and Its Bioactivity In Vitro
Jian-xue TANG,Yong-le XIAO,Jun-jie PENG,Shi-ji ZHAO,Xiao-ping WAN,Rong GAO()
Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
 全文: PDF(1476 KB)   HTML
摘要:

目的:在毕赤酵母SMD1168中表达融合抗菌肽,并检测其体外抑菌活性。方法:本实验从实验室先前构建的重组质粒pVAX1-RHKJT中克隆出已构建好的融合抗菌肽RHKJT基因片段,将RHKJT基因片段插入至pGAPZaA真核表达质粒中,通过PCR和测序验证,构建pGAPZα-RHKJT重组真核表达质粒,将线性化的pGAPZα-RHKJT电转化至毕赤酵母SMD1168中获得重组酵母SMDpG-RHKJT,并通过PCR和RT-PCR验证,对重组毕赤酵母SMDpG-RHKJT进行发酵,并收集发酵上清液进行体外生物活性测定。结果: 成功获得重组酵母SMDpG-RHKJT菌株,重组酵母发酵上清液对大肠杆菌标准菌、大肠杆菌耐药菌、沙门氏菌标准菌、金黄色葡萄球菌标准菌、金黄色葡萄球菌耐药菌、肺炎链球菌标准菌均具有显著的抑菌活性。结论:重组酵母表达的融合抗菌肽具有较广的抗菌谱和较高的抑菌活性,具有良好的潜在应用前景。

关键词: 融合抗菌肽基因表达毕赤酵母抑菌生物活性    
Abstract:

Objective:To express fusion antimicrobial peptide in Pichia pastoris SMD1168 and determine its in vitro bioactivity.Methods:The constructed fusion anti-peptide RHKJT gene fragment was cloned from the recombinant pVAX1-RHKJT vector previously constructed in laboratory. The RHKJT gene fragment was inserted into plasmid pGAPZaA, then verified by PCR and sequenced to construct recombinant pGAPZα-RHKJT vector. The linearized pGAPZα-RHKJT was electroporated into Pichia pastoris SMD1168 to obtain the recombinant yeast SMDpG-RHKJT. The recombinant Pichia pastoris SMDpG-RHKJT was fermented and confirmed by PCR and RT-PCR. Fermentation supernatants were collected for in vitro bioactivity assay.Results:The recombinant yeast SMDpG-RHKJT was successfully obtained, and the recombinant yeast’s fermentation supernatant had significant inhibition effects on Escherichia coli, Salmonella, Staphylococcus aureus and Streptococcus pneumonia.Conclusion:The recombinant antimicrobial peptide expressed by recombinant yeast has marked antibacterial activity and would facilitate the development of novel antibacterial additive feed later.

Key words: Fusion antibacterial peptide    Gene expression    Recombinant Pichia pastoris bacteriostasis    Antibacterial bioactivity
收稿日期: 2018-01-02 出版日期: 2018-07-06
ZTFLH:  Q786  
基金资助: * 四川省国际科技合作(2017HH0023);成都市科技攻关(2015NY-02-0028-NC);四川省科技(2016RZ0034);科技部国际合作资助项目(2011DFA10101103)
通讯作者: 高荣     E-mail: gaorong96@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
唐健雪
肖永乐
彭俊杰
赵世纪
万小平
高荣

引用本文:

唐健雪,肖永乐,彭俊杰,赵世纪,万小平,高荣. 融合抗菌肽基因在重组毕赤酵母的表达及体外活性研究 *[J]. 中国生物工程杂志, 2018, 38(6): 9-16.

Jian-xue TANG,Yong-le XIAO,Jun-jie PENG,Shi-ji ZHAO,Xiao-ping WAN,Rong GAO. Expression of Fusion Antibacterial Peptide in Recombinant Pichia pastoris and Its Bioactivity In Vitro. China Biotechnology, 2018, 38(6): 9-16.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20180602        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I6/9

片段 引物名称 序列(5'- 3') 长度
(bp)
FD F-FD GAAGCTGAATTCATGGGAATCATAAACACATTACAGA 37
R-FD GTCCCCGCATGTTAGAAGACTTCCCCTGCCCTCTCCGCTTCCTGGCTTTTTGCAGCATTTT 61
FD+2A-α F-FD-2A-α AATTGGAACCTGCGGTCTCCCTGGAACAAAATGCTGCAAAAAGCCAGGAAGCGGAGAGGGCA 62
R-FD-2A-α ATGATTTCTTACTCCTTGCATAGCTTCAGCCTCTCTTTTCTC 42
BNBD3/HNP3 F-BNBD3/HNP3 GAGGCTGAAGCTATGCAAGGAGTAAGAAATCATG 34
R-BNBD3/HNP3 TTAGAAGACTTCCCCTGCCCTCTCCGCTTCCGCAGCAGAATGCCCAGAGTC 51
BNBD3/
HNP3+2-α
F-2A-α(1) CGCTATGGCACCTGCATCTACCAGGGAAGACTCTGGGCATTCTGCTGCGGAAGCGGAGAGGGCA 64
R-2A-α(1) AGTAGATTTTTGAGCTTTTTACCCGCGAGTTTAGAGAATATTCCCATAGCTTCAGCCTCTCTTT
TCTC
68
ECD F-ECD GCCAGCATTGCTGCTAAAGAAGAAGGGGTATCTCTCGAGAAAAGAGAGGCTGAAGCTATGGG
AATATTCTCTAAACTCGC
80
R-ECD GTCCCCGCATGTTAGAAGACTTCCCCTGCCCTCTCCGCTTCCGTATTTACGCAGAGAGAACAGCA 65
ECD+2A+α F-ECD-2A-α GGTAAGCGCCTCTTCAAGAAGCTGCTGTTCTCTCTGCGTAAATACGGAAGCGGAGAGGGCA 61
R-ECD-2A-α CGCCACCTAGCAGAGTTTTAATACGCTTTAGTAAGCCCATAGCTTCAGCCTCTCTTTTCTC 61
AJI F-AJI GAGAGGCTGAAGCTATGGGCTTACTAAAGCGTATTAA 37
R-AJI CTAGTCTAGACTAAAAAAGCTTCTTTATTTTCCAGA 36
表1  引物序列
菌株 卡那霉素(μg/ml) 多粘菌素B
(μg/ml)
大肠杆菌标准菌 1、2、4
大肠杆菌耐药菌 2、4、8
沙门氏菌标准菌 0.5、1、2
金黄色葡萄球菌标准菌 0.5、1、2
金黄色葡萄球菌耐药菌 512、1024、2048
肺炎链球菌标准菌 2、4、8
表2  六种细菌菌株的抗生素使用浓度梯度
图1  PCR扩增得到的融合抗菌肽片段的电泳图(1%琼脂糖凝胶)
图2  重组质粒pGAPZαA- RHKJT PCR 扩增产物电泳图 (1%琼脂糖凝胶)
图3  重组酵母菌的PCR鉴定(1%琼脂糖凝胶)
图4  RT-PCR电泳检测重组酵母转录情况(1%琼脂糖凝胶)
图5  大肠杆菌标准菌抑菌实验结果
图6  大肠杆菌耐药菌抑菌实验结果
图7  肺炎链球菌标准菌抑菌实验结果
图8  金黄色葡萄球菌标准菌抑菌实验结果
图9  金黄色葡萄球菌耐药菌抑菌实验结果
图10  沙门氏菌标准菌抑菌实验结果
[1] 乔玮, 郝华, 彭会 , 等. 抗菌肽作为饲料添加剂的研究进展. 生物技术通报, 2014(10):43-48.
Qiao W, Hao H, Peng H , et al. Progress of antimicrobial peptides as feed additive. Biotechnology Bulletin, 2014(10):43-48.
[2] Kaufmann B B, Hung D T . The fast track to multidrug resistance. Molecular Cell, 2010,37(3):297-298.
doi: 10.1016/j.molcel.2010.01.027 pmid: 20159549
[3] Hs L . Alternatives to antibiotics: a symposium on the challenges and solutions for animal production. Animal Health Research Reviews, 2013,14(1):78-87.
doi: 10.1017/S1466252313000030
[4] Sierra J M, Fusté E, Rabanal F , et al. An overview of antimicrobial peptides and the latest advances in their development. Expert Opinion on Biological Therapy, 2017,17(6).
doi: 10.1080/14712598.2017.1315402 pmid: 28368216
[5] Peschel A, Sahl H G . The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nature Reviews Microbiology, 2006,4(7):529-536.
doi: 10.1016/j.scriptamat.2005.11.004 pmid: 202020202020202020202020
[6] Otto M . Colonization of the skin and antimicrobial peptides. Expert Review of Dermatology, 2010,5(2):183-195.
doi: 10.1586/edm.10.6
[7] 燕晓翠, 杨春蕾, 姚大为 , 等. 抗菌肽的国内外研究进展. 天津农业科学, 2017,23(5):35-41.
Yan X C, Yang C L, Yao D W , et al. Research progress on domestic and abroad of antibacterial peptides. Tianjin Agricultural Sciences, 2017,23(5):35-41.
[8] Zasloff M . Antimicrobial peptides of multicellular organisms. Nature, 2002,415(6870):389-395.
doi: 10.1038/415389a pmid: 11807545
[9] 陈晓平, 贾春兰, 马吉霞 . 杂合抗菌肽Sα-Jp基因真核表达载体的构建. 食品与发酵科技, 2014(2):9-12.
doi: 10.3969/j.issn.1674-506X.2014.02-003
Chen X P, Jia C L, Ma J X . Construction of eukaryotic expression vector for antibacterial peptide Sα-Jp gene. Food and Fermentation Technology, 2014(2):9-12.
doi: 10.3969/j.issn.1674-506X.2014.02-003
[10] Servettaz A, Kavian N, Nicco C , et al. Controlling the release of peptide antimicrobial agents from surfaces. Biomaterials, 2010,31(8):2348-2357.
doi: 10.1016/j.biomaterials.2009.11.082 pmid: 20004967
[11] Da C J, Cova M, Ferreira R , et al. Antimicrobial peptides: an alternative for innovative medicines?. Applied Microbiology & Biotechnology, 2015,99(5):2023-2040.
doi: 10.1007/s00253-015-6375-x pmid: 25586583
[12] 彭梅, 孙茂盛 . 重组抗菌肽基因克隆及其在Pichia pastoris中的表达及鉴定. 中国生物工程杂志, 2008(s1):27-31.
Peng M, Sun M S . Cloning and expression of antibaterial peptide gene in Pichia pastoris and identifying of activity. China Biotechnology, 2008(s1):27-31.
[13] 杨平, 袁奕豪, 杨晓莉 , 等. 抗菌肽高效表达及生产优化研究进展. 生物技术通报, 2016,32(3):24-30.
doi: 10.13560/j.cnki.biotech.bull.1985.2016.03.005
Yang P, Yuan Y H, Yang X L , et al. Research progress of efficient expression and optimization of production of antibacterial peptide. Biotechnology Bulletin, 2016,32(3):24-30.
doi: 10.13560/j.cnki.biotech.bull.1985.2016.03.005
[14] Fink J, Boman A, Boman H G , et al. Design, synthesis and antibacterial activity of cecropin-like model peptides. International Journal of Peptide & Protein Research, 1989,33(6):412-421.
doi: 10.1111/j.1399-3011.1989.tb00217.x pmid: 2777475
[15] 武如娟, 张日俊 . 杂合抗菌肽设计及生物学活性的研究进展. 中国生物工程杂志, 2013,33(9):94-100.
Wu R J, Zhang R J . The progress of hybrid peptides on design and biological activity. China Biotechnology, 2013,33(9):94-100.
[16] Lu X M, Jin X B, Zhu J Y , et al. Expression of the antimicrobial peptide cecropin fused with human lysozyme in Escherichia coli. Applied Microbiology & Biotechnology, 2010,87(6):2169-2176.
doi: 10.1007/s00253-010-2606-3 pmid: 20499232
[17] Shin J R, Lim K J, Kim D J , et al. Display of multimeric antimicrobial peptides on the Escherichia coli cell surface and its application as whole-cell antibiotics. Plos One, 2013,8(3):e58997.
doi: 10.1371/journal.pone.0058997 pmid: 3597565
[18] 王秀青, 张素芳, 曹瑞兵 , 等. 抗菌肽天蚕素B基因及其串联体在毕赤酵母中的表达. 南京农业大学学报, 2007,30(3):120-123.
Wang X Q, Zhang S F, Cao R B , et al. Antibacterial peptide Cecropin B and its tandem gene expressed in Pichia pastoris. Journal of Nanjing Agricultral University, 2007,30(3):120-123.
[19] Andreu D, Ubach J, Boman A , et al. Shortened cecropin A-melittin hybrids. Significant size reduction retains potent antibiotic activity. Febs Letters, 1992,296(2):190-194.
doi: 10.1016/0014-5793(92)80377-S
[20] 张素芳, 曹瑞兵, 贾赟 , 等. 杂合抗菌肽CecA-mil的改造及在毕赤酵母中的分泌表达. 微生物学报, 2005,45(2):218-222.
doi: 10.3321/j.issn:0001-6209.2005.02.013
Zhang S F, Cao R B, Jia Y , et al. Modification of hybrid antimicrobial peptide CecA-mil gene and its over-secretion expression in Pichia pastoris. Acta Microbiologica Sinica, 2005,45(2):218-222.
doi: 10.3321/j.issn:0001-6209.2005.02.013
[21] 尹佳, 詹冬玲, 崔敬爱 , 等. 抗菌肽Japonicin Ⅱ基因的克隆及其在Pichia pastoris中的表达. 中国酿造, 2009,28(12):23-25.
doi: 10.3969/j.issn.0254-5071.2009.12.008
Yin J, Zhan D L, Cui J A , et al. Cloning and expression of antimicrobial peptide Japonicin Ⅱ in Picha pastoris. China Brewing, 2009,28(12):23-25.
doi: 10.3969/j.issn.0254-5071.2009.12.008
[22] Vogl T, Glieder A . Regulation of Pichia pastoris promoters and its consequences for protein production. New Biotechnology, 2013,30(4):385-404.
doi: 10.1016/j.nbt.2012.11.010 pmid: 23165100
[23] Hsu K H, Pei C, Yeh J Y , et al. Production of bioactive human α-defensin 5 in Pichia pastoris. Journal of General\s&\sapplied Microbiology, 2009,55(5):395-401.
[24] 章华兵 . 融合β防御素基因的构建及其表达. 成都: 四川大学, 2009.
Zhang H B . Study on the construction and bioactivity of fusion gene of beta defensin. Chengdu: Sichuan University, 2009.
[25] 杨毅 . 新型防御素基因的克隆与原核表达研究. 成都: 四川大学, 2006.
doi: 10.7666/d.y994312
Yang Y . Construction and prokaryotic expression of novel fusion gene of bovine neutrophil beta defensin 3 and human alpha defensin 3. Chengdu: Sichuan University, 2006.
doi: 10.7666/d.y994312
[26] 程驰 . 新型融合抗菌肽基因的构建及表达活性研究. 成都: 四川大学, 2006.
doi: 10.7666/d.y1002126
Cheng C . Construction and expression bioactivity of novel fusion gene of antibacterial peptides. Chengdu: Sichuan University, 2006.
doi: 10.7666/d.y1002126
[27] 郑敏 . 融合抗菌肽基因AJI重组真核质粒的构建及其活性研究. 成都: 四川大学, 2008.
Zheng M . Construction and bioactivity of eukaryotic recombiant plasmid of fusion antibacterial peptide AJI gene. Chengdu: Sichuan University, 2008.
[1] 陈中伟,郑璞,陈鹏程,吴丹. 耐热植酸酶突变体的筛选及性质研究 *[J]. 中国生物工程杂志, 2021, 41(2/3): 30-37.
[2] 陈鑫洁,钱芷兰,刘启,赵清,张元兴,蔡孟浩. 毕赤酵母底盘芳香族氨基酸合成途径改造生产肉桂酸及对香豆酸*[J]. 中国生物工程杂志, 2021, 41(10): 52-61.
[3] 石鹏程, 纪晓俊. 酵母系统表达人表皮生长因子研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 72-79.
[4] 田园,李艳玲. 基于重组毕赤酵母的fusaruside生物合成 *[J]. 中国生物工程杂志, 2019, 39(7): 8-14.
[5] 彭强强,刘启,徐名强,张元兴,蔡孟浩. 新型重组毕赤酵母产人胰岛素前体的表达工艺研究 *[J]. 中国生物工程杂志, 2019, 39(7): 48-55.
[6] 严建,贾禄强,丁健,史仲平. 甲醇周期诱导控制强化毕赤酵母生产猪α干扰素 *[J]. 中国生物工程杂志, 2019, 39(6): 32-40.
[7] 姚银,闵琪,熊海容,张莉. 木聚糖酶和甘露聚糖酶在毕赤酵母中的共表达及产酶分析 *[J]. 中国生物工程杂志, 2019, 39(3): 37-45.
[8] 张文玉,魏东升,钱江潮. 共表达PDI1MDH1HAC1基因对重组毕赤酵母分泌表达葡糖氧化酶的影响 *[J]. 中国生物工程杂志, 2019, 39(10): 24-33.
[9] 王彤,徐岩,喻晓蔚. 毕赤酵母Kex2蛋白酶的同源表达及酶学性质 *[J]. 中国生物工程杂志, 2019, 39(1): 38-45.
[10] 程功,焦思明,任立世,冯翠,杜昱光. 枯草芽孢杆菌壳聚糖酶水解制备低脱乙酰度壳寡糖及其组分分析 *[J]. 中国生物工程杂志, 2018, 38(9): 19-26.
[11] 张潘潘,许延吉,王之可,刘晓,李素霞. 重组猪胰蛋白酶及其R122位点突变体在毕赤酵母中的高效表达及其性质研究[J]. 中国生物工程杂志, 2018, 38(5): 56-65.
[12] 庄旻敏,贾晓会,施定基,朱嘉诚,冯思豫,何培民,贾睿. 转基因聚球藻7942中vp28基因表达效率及其光合特性分析[J]. 中国生物工程杂志, 2018, 38(4): 30-37.
[13] 黄鹏,杜望春,施尉珺,饶玉良,孙庆文,张宁. 人源类溶菌酶蛋白6的功能研究及生理特性分析 *[J]. 中国生物工程杂志, 2018, 38(3): 1-8.
[14] 姚立鹏,葛炜,胡英君,骆海燕,吴珊珊,林飞蕾,郭俊明. 环状RNA的结构和功能特性及其与胃癌发生的关系 *[J]. 中国生物工程杂志, 2018, 38(2): 82-88.
[15] 焦思明,程功,张毓宸,冯翠,任立世,李建军,杜昱光. 里氏木霉几丁质酶表达及其水解产物组成与结构分析 *[J]. 中国生物工程杂志, 2018, 38(10): 30-37.