Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (5): 56-65    DOI: 10.13523/j.cb.20180508
研究报告     
重组猪胰蛋白酶及其R122位点突变体在毕赤酵母中的高效表达及其性质研究
张潘潘1,许延吉1,王之可2,刘晓2,李素霞1,*()
1 华东理工大学生物反应器工程重点实验室 上海 200237
2 上海雅心生物技术有限公司 上海 201108
High-level Expression and Characterization of Recombinant Porcine Trypsin and Its R122 Site Mutant in Pichia pastoris
Pan-pan ZHANG1,Yan-ji XU1,Zhi-ke WANG2,Xiao LIU2,Su-xia LI1,*()
1 East China University of Science and Technology,State Key Laboratory of Bioreactor Engineering,Shanghai 200237,China
2 Shanghai Yaxin Biotehnology Co. Ltd,Shanghai 201108,China
 全文: PDF(1299 KB)   HTML
摘要:

目的:研究R122位点突变重组猪胰蛋白酶,与野生型酶相比较,该位点对重组猪胰蛋白酶(RPT)性质的影响。方法:以毕赤酵母GS115作为表达宿主,对RPT、突变体mRPT(R122H)和 mRPT(R122H/R73G/R130T)进行表达及纯化。并对其性质和稳定进行对比研究。结果:重组胰蛋白酶及其突变体在毕赤酵母中均获得了高效表达。相对于RPT,突变体mRPT(R122H)和 mRPT(R122H/R73G/R130T)在以N-苯甲酰-L-精氨酸乙酯 (BAEE)为底物时,具有更强底物结合力,三者的米氏常数分别为18.8μmol/L、9.0μmol/L和11.0μmol/L;两突变体耐高温耐碱能力增强;在Ca 2+存在及去除的条件下,突变体具有更强的抗自降解能力。 结论:可以利用毕赤酵母高效表达重组胰蛋白酶及其突变体。mRPT(R122H)和mRPT(R122H/R73G/R130T) 相对于野生型RPT,对高pH条件和高温的耐受性增强,该稳定性的提高主要归因于R122位点的突变。

关键词: 重组猪胰蛋白酶毕赤酵母突变体mRPT(R122H)mRPT(R122H/R73G/R130T)性质稳定性    
Abstract:

Objective:Study the effect of R122 residue mutation on the stability of recombinant porcine trypsin (RPT).Methods:RPT,mutants mRPT(R122H) and mRPT(R122H/R73G/R130) were expressed in Pichia pastoris GS115 and further purified. The properties and stabilities of RPT and two mutants was investigated and compared.Results:RPT and its mutants were highly expressed in Pichia pastoris. Relative to RPT, mutant mRPT (R122H) and mRPT (R122H/R73G/R130T) showed higher affinity to substrate BAEE, The Km values were 18.8μmol/L, 9.0μmol/L and 11.0μmol/L, respectively. Increased stability of mutants to high temperature and alkali were observed. And higher resistance against autolysis were got in the presence and without Ca 2+. Conclusion:Pichia pastoris can be used to efficiently express RPT and its mutants.Increased stability under alkaline condition and higher thermal stability and higher anti-self-digestion were got in mutant mRPT (R122H) and mRPT (R122H/R73G/R130T) compared to wild-type RPT, which contribute to the site mutation at the R122.

Key words: Recombinant porcine trypsin    Pichia pastoris    Mutation    mRPT(R122H)    mRPT(R122H/R73G/R130T)    Property    Stability
收稿日期: 2018-01-11 出版日期: 2018-06-05
ZTFLH:  Q786  
通讯作者: 李素霞     E-mail: lisuxia@ecust.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张潘潘
许延吉
王之可
刘晓
李素霞

引用本文:

张潘潘,许延吉,王之可,刘晓,李素霞. 重组猪胰蛋白酶及其R122位点突变体在毕赤酵母中的高效表达及其性质研究[J]. 中国生物工程杂志, 2018, 38(5): 56-65.

Pan-pan ZHANG,Yan-ji XU,Zhi-ke WANG,Xiao LIU,Su-xia LI. High-level Expression and Characterization of Recombinant Porcine Trypsin and Its R122 Site Mutant in Pichia pastoris. China Biotechnology, 2018, 38(5): 56-65.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20180508        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I5/56

图1  猪胰蛋白酶三维结构模型模拟
图2  重组质粒的线性化
图3  重组猪胰蛋白酶原及其突变体诱导表达酶原
图4  mRPT(R122H) 10L发酵过程记录、生长曲线和SDS-PAGE表达鉴定
图5  mRPT(R122H)的纯化
图6  RPT和突变体mRPT(R122H)、mRPT(R122H/R73G/R130T)的Km值测定
Km(μmol/L) Kcat(min-1) Kcat/Km[min-1/(μmol/L)] Vmax[μmol/(ml·min)]
RPT 18.8 7 027.3 373.8 1 712.3
mRPT(R122H) 9.0 6 492.9 721.4 1 318.4
mRPT(R122H/R73G/R130T) 11.0 7 008.5 637.1 1 423.1
表1  重组猪胰蛋白酶及两突变体的酶促动力学
图7  RPT和突变体mRPT(R122H)、 mRPT(R122H/R73G/R130T)的最适pH和pH稳定性
图8  重组猪胰蛋白酶和突变体mRPT(R122H)、mRPT(R122H/R73G/R130T)的最适温度
图9  RPT和突变体mRPT(R122H)、 mRPT(R122H/R73G/R130T)的温度稳定性
图10  RPT和突变体自降解活性测定
图11  RP-HPLC分析RPT及其突变体的自降解
[1] Olafson R W, Jurasek L, Carpenter M R , et al. Amino acid sequence of Streptomyces griseus trypsin. cyanogen bromide fragments and complete sequence. Biochemistry. 1975,14(6):1168-1177.
doi: 10.1021/bi00677a011 pmid: 804314
[2] Lombardi J, Valetti N W, Picó G , et al. Obtainment of a highly concentrated pancreatic serine proteases extract from bovine pancreas by precipitation with polyacrylate. Separation & Purification Technology, 2013,116(37):170-174.
doi: 10.1016/j.seppur.2013.05.047
[3] Zhang Y, Ling Z, Du G , et al. Improved production of active Streptomyces griseus trypsin with a novel auto-catalyzed strategy. Sci Rep, 2016,6:23158.
doi: 10.1038/srep23158 pmid: 26983398
[4] 杜坤, 甘一如, 黄鹤 . 活性位点邻近的Ω-loop对胰蛋白酶热稳定性和活性的影响. 高校化学工程学报, 2017,31(3):657-662.
Du K, Gan Y R, Huang H . Effects of near active sites on the stability and activity of trypsin. Journal of Chemical Engineering of Chinese Universities, 2017,31(3):657-662.
[5] Cao Y, Wen L, Svec F , et al. Magnetic AuNP@Fe3O4, nanoparticles as reusable carriers for reversible enzyme immobilization. Chemical Engineering Journal, 2016,286(15):272-281.
doi: 10.1016/j.cej.2015.10.075
[6] Liu Y, Zhang W, Yang X , et al. DsbA-DsbAmut fusion chaperon improved soluble expression of human trypsinogen-1 in Escherichia coli. Frontiers of Chemical Science & Engineering, 2015,9(4):511-521.
doi: 10.1007/s11705-015-1519-1
[7] Shu M, Shen W, Wang X , et al. Expression, activation and characterization of porcine trypsin in Pichia pastoris GS115. Protein Expression & Purification, 2015,114(16):149-155.
doi: 10.1016/j.pep.2015.06.014 pmid: 26118809
[8] Olsen J V, Ong S E, Mann M . Trypsin cleaves exclusively C-terminal to arginine and lysine residues. Molecular & Cellular Proteomics, 2004,3(6):608-614.
doi: 10.1074/mcp.T400003-MCP200 pmid: 15034119
[9] Maroux S, Desnuelle P . On some autolyzed derivatives of bovine trypsin. Biochimica Et Biophysica Acta, 1969,181(1):59-72.
doi: 10.1016/0005-2795(69)90227-X pmid: 5815587
[10] Raphael K L, Willingham F F . Hereditary pancreatitis: current perspectives. Clinical & Experimental Gastroenterology, 2016,9(Issue 1):197-207.
[11] Whitcomb D C, Gorry M C, Preston R A , et al. Hereditary pancreatitis is caused by a mutation in the cationic trypsinogen gene. Nature Genetics, 1996,14(2):141-145.
doi: 10.1038/ng1096-141
[12] 马强, 吴倩, 李素霞 . R122L突变提高重组人阴离子型胰蛋白酶的稳定性的研究. 中国生化药物杂志, 2014,34(2):61-64,67.
Ma Q, Wu Q, Li S X . The research of site R 122 L mutate improve the stability of recombinant human anionic trypsin. Chinese Journal of Biochemical and Pharmaceutics, 2014,34(2):61-64,67.
[13] Várallyay E, Pál G, Patthy A , et al. Two mutations in rat trypsin confer resistance against autolysis. Biochemical & Biophysical Research Communications, 1998,243(1):56-60.
[14] 张震阳, 杨艳坤, 战春君 , 等. Pichia pastoris X-33 △GT2缓解甘油对AOX1的阻遏并用于外源蛋白的高效表达. 中国生物工程杂志, 2017,37(1):38-45.
Zhang Z Y, Yang Y K, Zhan C J , et al. Pichia pastoris X-33 ΔGT2 release the glycerol repression on AOX1and Ef-ficiently express heterologous proteins. China Biotechnology, 2017,37(1):38-45.
[15] 王琨 . 南极磷虾胰蛋白酶的分离纯化及酶学性质研究. 大连:大连理工大学, 2013.
Wang K . Purification and characterization of the trypsin from Euphausia superba. Dalian:Dalian University of Technology, 2013.
[16] Huang Q, Wang Z, Li Y , et al. Refined 1.8A resolution crystal structure of the porcine epsilon-trypsin. Biochimica Et Biophysica Acta, 1994,1209(1):77-82.
doi: 10.1016/0167-4838(94)90139-2
[17] Syedibrahim B, Shamaladevi N, Vasantha P . Trypsin activity reduced by an autocatalytically produced nonapeptide. Journal of Biomolecular Structure & Dynamics, 2004,21(6):737-744.
doi: 10.1080/07391102.2004.10506964 pmid: 15106996
[1] 陈中伟,郑璞,陈鹏程,吴丹. 耐热植酸酶突变体的筛选及性质研究 *[J]. 中国生物工程杂志, 2021, 41(2/3): 30-37.
[2] 魏子翔,张柳群,雷磊,韩正刚,杨江科. 疏棉状嗜热丝孢菌(Thermomyces lanuginosus)脂肪酶的理性设计提高其活性和温度稳定性[J]. 中国生物工程杂志, 2021, 41(2/3): 63-69.
[3] 明玥,赵自通,王鸿磊,梁志宏. 基于序列和结构分析的酶热稳定性改造策略*[J]. 中国生物工程杂志, 2021, 41(10): 100-108.
[4] 梁爱玲,刘文婷,武攀,李倩,高健,张洁,刘卫东,贾士儒,郑迎迎. 来源于Exophiala aquamarina的新型玉米赤霉烯酮水解酶的性质及底物结合中心关键氨基酸的功能研究*[J]. 中国生物工程杂志, 2021, 41(10): 19-27.
[5] 陈鑫洁,钱芷兰,刘启,赵清,张元兴,蔡孟浩. 毕赤酵母底盘芳香族氨基酸合成途径改造生产肉桂酸及对香豆酸*[J]. 中国生物工程杂志, 2021, 41(10): 52-61.
[6] 石鹏程, 纪晓俊. 酵母系统表达人表皮生长因子研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 72-79.
[7] 陈东,李程程,史仲平. 植物乳杆菌胞外多糖包覆的高稳定性硒纳米颗粒的制备及其抗氧化活性的研究*[J]. 中国生物工程杂志, 2020, 40(9): 18-27.
[8] 朱衡,张继福,张云,胡云峰. 环氧交联剂和氨基载体固定化海洋假丝酵母脂肪酶*[J]. 中国生物工程杂志, 2020, 40(5): 57-68.
[9] 马翠萍,刘朵朵,潘炳菊,申会涛,宋亚囝. 来源于嗜碱芽孢杆菌N16-5甘露聚糖利用基因簇的乙酰酯酶AesA的克隆及性质分析*[J]. 中国生物工程杂志, 2020, 40(3): 65-71.
[10] 赵晓艳,陈允妲,章雅倩,吴晓玉,王飞,陈金印. Myxococcus sp.V11海藻糖合酶TreS II分子改造 *[J]. 中国生物工程杂志, 2020, 40(3): 79-87.
[11] 朱衡,张继福,张云,孙爱君,胡云峰. 聚乙二醇二缩水甘油醚交联氨基载体LX-1000EA固定化脂肪酶 *[J]. 中国生物工程杂志, 2020, 40(1-2): 124-132.
[12] 王彦伟,李鹏昊,梁严予,关洋,逄文强,田克恭. 猪圆环病毒2型病毒样颗粒的高效组装技术研究*[J]. 中国生物工程杂志, 2020, 40(11): 35-42.
[13] 吝建华,韩君,徐寒梅. PD-1/PD-L1免疫检查点抗体药物制剂稳定性开发[J]. 中国生物工程杂志, 2020, 40(10): 35-42.
[14] 胡富,李谦,朱本伟,宁利敏,姚忠,孙芸,杜昱光. 石莼多糖裂解酶的研究进展 *[J]. 中国生物工程杂志, 2019, 39(8): 104-113.
[15] 杨林,王柳月,李慧美,陈华波. 改进的多片段重叠延伸PCR制作基因多位点突变 *[J]. 中国生物工程杂志, 2019, 39(8): 52-58.