Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (4): 24-32    DOI: 10.13523/j.cb.2111034
    
Research Progress of CRISPR/Cas Gene Editing Technology in Enhancer Function Analysis and Identification
ZHANG Jun-you1,2,WANG Qi-lin1,2,LIU Qian1,2,QI Si-han1,2,LI Chun-yan1,2,3,**()
1 School of Engineering Medicine & Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
2 School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
3 Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology),Beihang University, Beijing 100191, China
Download: HTML   PDF(1629KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Enhancers are essential cis-regulatory DNA elements, which are involved in many biological processes and closely associated with the initiation and progression of cancer and various human diseases. Although bioinformatics-based methods can identify and screen enhancers, the uncertainty in the orientation and distance between enhancers and target genes makes it difficult to study the functional mechanism of enhancers in-depth. Recently, the continuous development and innovation of CRISPR/Cas technology makes it applicable to the investigation and validation on the molecular mechanisms of enhancers. This article reviews the progression of CRISPR/Cas technology and its application in biology and focuses on the innovative applications of CRISPR/Cas technology in enhancer research in recent years (e.g., how CRISPR/Cas technology edits enhancers and the principles of different CRISPR/Cas technologies), aiming to provide a feasible reference for further study on the enhancer functional analysis.



Key wordsCRISPR/Cas      Enhancer      Super enhancer      Gene editing     
Received: 16 November 2021      Published: 05 May 2022
ZTFLH:  Q812  
Corresponding Authors: Chun-yan LI     E-mail: lichunyan@buaa.edu.cn
Cite this article:

ZHANG Jun-you,WANG Qi-lin,LIU Qian,QI Si-han,LI Chun-yan. Research Progress of CRISPR/Cas Gene Editing Technology in Enhancer Function Analysis and Identification. China Biotechnology, 2022, 42(4): 24-32.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2111034     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I4/24

类型 亚型 特征蛋白质 目标序列 需要tracrRNA 主要来源 参考文献
1类 I A, B, C, D, E, F, U Cas3 dsDNA 细菌和古细菌 [22]
III A, B, C, D Cas10 ssRNA 细菌和古细菌
IV - Csf1 dsDNA 古细菌
2类 II A, B, C Cas9 dsDNA 细菌 [23]
V A, B, C, U Cas12 dsDNA 细菌和古细菌
VI A, B, C Cas13 ssRNA 细菌
Table 1 The latest classification of CRISPR/Cas systems
Fig.1 CRISPR/Cas9 and CRISPR/dCas9 for enhancer editing (a) Cas9 endonuclease cleaves the enhancer DNA sequences under the guidance of sgRNA/gRNA to achieve the knockout of the target enhancer (b) dCas9 can be fused to activator under the guidance of gRNA for enhancer activation (c) dCas9 can be fused to repressor under the guidance of gRNA for enhancer interference
[1]   Chen H, Li C Y, Peng X X, et al. A pan-cancer analysis of enhancer expression in nearly 9000 patient samples. Cell, 2018, 173(2): 386-399.e12.
doi: S0092-8674(18)30307-6 pmid: 29625054
[2]   Morton A R, Dogan-Artun N, Faber Z J, et al. Functional enhancers shape extrachromosomal oncogene amplifications. Cell, 2019, 179(6): 1330-1341.e13.
doi: 10.1016/j.cell.2019.10.039
[3]   Hnisz D, Abraham B J, Lee T I, et al. Super-enhancers in the control of cell identity and disease. Cell, 2013, 155(4): 934-947.
doi: 10.1016/j.cell.2013.09.053
[4]   Fredriksson N J, Ny L, Nilsson J A, et al. Systematic analysis of noncoding somatic mutations and gene expression alterations across 14 tumor types. Nature Genetics, 2014, 46 (12): 1258-1263.
doi: 10.1038/ng.3141 pmid: 25383969
[5]   Melton C, Reuter J A, Spacek D V, et al. Recurrent somatic mutations in regulatory regions of human cancer genomes. Nature Genetics, 2015, 47 (7): 710-716.
doi: 10.1038/ng.3332
[6]   Zhu S, Li W, Liu J, et al. Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR-Cas9 library. Nature Biotechnology, 2016, 34 (12): 1279-1286.
doi: 10.1038/nbt.3715
[7]   Liu Y, Cao Z, Wang Y, et al. Genome-wide screening for functional long noncoding RNAs in human cells by Cas 9 targeting of splice sites. Nature Biotechnology, 2018, 36 (12): 1203-1210.
doi: 10.1038/nbt.4283
[8]   Benoist C, Chambon P. In vivo sequence requirements of the SV40 early promoter region. Nature, 1981, 290 (5804): 304-310.
doi: 10.1038/290304a0
[9]   Spitz F, Furlong E E M. Transcription factors: from enhancer binding to developmental control. Nature Reviews Genetics, 2012, 13 (9): 613-626.
doi: 10.1038/nrg3207
[10]   Sur I, Taipale J. The role of enhancers in cancer. Nature Reviews Cancer, 2016, 16(8): 483-493.
doi: 10.1038/nrc.2016.62
[11]   Nott A, Holtman I R, Coufal N G, et al. Brain cell type-specific enhancer-promoter interactome maps and disease-risk association. Science, 2019, 366(6469): 1134-1139.
doi: 10.1126/science.aay0793
[12]   Jun M K, Cannavò E, Crabtree G W, et al. Recapitulation and reversal of schizophrenia-related phenotypes in Setd1a-deficient mice. Neuron, 2019, 104(3): 471-487.e12.
doi: 10.1016/j.neuron.2019.09.014
[13]   Sun Y Q, Zhou B, Mao F B, et al. HOXA 9 reprograms the enhancer landscape to promote leukemogenesis. Cancer Cell, 2018, 34(4): 643-658.e5.
doi: 10.1016/j.ccell.2018.08.018
[14]   Morcillo P, Rosen C, Dorsett D. Genes regulating the remote wing margin enhancer in the Drosophila cut locus. Genetics, 1996, 144(3): 1143-1154.
doi: 10.1093/genetics/144.3.1143 pmid: 8913756
[15]   Sun C B, Zhang X. Advance in the research on super-enhancer. Hereditas(Beijing), 2016, 38(12): 1056-1068.
[16]   Arnold C D, Gerlach D, Stelzer C, et al. Genome-wide quantitative enhancer activity maps identified by STARR-seq. Science, 2013, 339(6123): 1074-1077.
doi: 10.1126/science.1232542
[17]   Buenrostro J D, Giresi P G, Zaba L C, et al. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nature Methods, 2013, 10 (12): 1213-1218.
doi: 10.1038/nmeth.2688 pmid: 24097267
[18]   Visel A, Blow M J, Li Z, et al. ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature, 2009, 457(7231): 854-858.
doi: 10.1038/nature07730
[19]   Ishino Y, Shinagawa H, Makino K, et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology, 1987, 169(12): 5429-5433.
doi: 10.1128/jb.169.12.5429-5433.1987 pmid: 3316184
[20]   Mojica F J M, Díez-Villaseñor C, García-Martínez J, et al. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. Journal of Molecular Evolution, 2005, 60(2): 174-182.
doi: 10.1007/s00239-004-0046-3
[21]   Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science, 2007, 315(5819): 1709-1712.
doi: 10.1126/science.1138140 pmid: 17379808
[22]   Makarova K S, Zhang F, Koonin E V. SnapShot: class 1 CRISPR-cas systems. Cell, 2017, 168(5): 946-946.e1.
doi: S0092-8674(17)30196-4 pmid: 28235204
[23]   Makarova K S, Zhang F, Koonin E V. SnapShot: class 2 CRISPR-cas systems. Cell, 2017, 168(1-2): 328-328.e1.
doi: S0092-8674(16)31754-8 pmid: 28086097
[24]   Franic D, Dobrinic P, Korac P. Key achievements in gene therapy development and its promising progress with gene editing tools (ZFN, TALEN, CRISPR/Cas9). Molecular and Experimental Biology in Medicine, 2019, 2(1): 1-9.
[25]   Auer T O, Duroure K, de Cian A, et al. Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Research, 2014, 24(1): 142-153.
doi: 10.1101/gr.161638.113
[26]   Ma Y W, Zhang L F, Huang X X. Genome modification by CRISPR/cas9. The FEBS Journal, 2014, 281(23): 5186-5193.
doi: 10.1111/febs.13110
[27]   Liu X S, Wu H, Krzisch M, et al. Rescue of fragile X syndrome neurons by DNA methylation editing of the FMR1 gene. Cell, 2018, 172(5): 979-992.e6.
doi: 10.1016/j.cell.2018.01.012
[28]   Lowder L G, Zhang D W, Baltes N J, et al. A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiology, 2015, 169(2): 971-985.
doi: 10.1104/pp.15.00636 pmid: 26297141
[29]   Gori J L, Hsu P D, Maeder M L, et al. Delivery and specificity of CRISPR-Cas 9 genome editing technologies for human gene therapy. Human Gene Therapy, 2015, 26(7): 443-451.
doi: 10.1089/hum.2015.074
[30]   Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096): 816-821.
doi: 10.1126/science.1225829
[31]   Mali P, Yang L H, Esvelt K M, et al. RNA-guided human genome engineering via Cas9. Science, 2013, 339(6121): 823-826.
doi: 10.1126/science.1232033
[32]   Cong L, Ran F A, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121): 819-823.
doi: 10.1126/science.1231143 pmid: 23287718
[33]   Konermann S, Brigham M, Trevino A E, et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature, 2015, 517(7536): 583-588.
doi: 10.1038/nature14136
[34]   Korkmaz G, Lopes R, Ugalde A P, et al. Functional genetic screens for enhancer elements in the human genome using CRISPR-Cas9. Nature Biotechnology, 2016, 34(2): 192-198.
doi: 10.1038/nbt.3450 pmid: 26751173
[35]   Diao Y R, Li B, Meng Z P, et al. A new class of temporarily phenotypic enhancers identified by CRISPR/Cas9-mediated genetic screening. Genome Research, 2016, 26(3): 397-405.
doi: 10.1101/gr.197152.115
[36]   Zhang X, Choi P S, Francis J M, et al. Identification of focally amplified lineage-specific super-enhancers in human epithelial cancers. Nature Genetics, 2016, 48(2): 176-182.
doi: 10.1038/ng.3470
[37]   郭晓龙, 张青峰, 野庆松, 等. 靶向ezrin增强子关键区的CRISPR/Cas9载体的构建. 生物学杂志, 2017, 34(6): 19-22.
[37]   Guo X L, Zhang Q F, Ye Q S, et al. Construction of CRISPR/Cas 9 vectors targeting to ezrin enhancer key region. Journal of Biology, 2017, 34(6): 19-22.
[38]   Gilbert L A, Horlbeck M A, Adamson B, et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell, 2014, 159(3): 647-661.
doi: 10.1016/j.cell.2014.09.029 pmid: 25307932
[39]   Keir M E, Butte M J, Freeman G J, et al. PD-1 and its ligands in tolerance and immunity. Annual Review of Immunology, 2008, 26: 677-704.
doi: 10.1146/annurev.immunol.26.021607.090331
[40]   Chen L P, Han X. Anti-PD-1/PD-L 1 therapy of human cancer: past, present, and future. The Journal of Clinical Investigation, 2015, 125(9): 3384-3391.
doi: 10.1172/JCI80011
[41]   Xu Y P, Wu Y C, Zhang S L, et al. A tumor-specific super-enhancer drives immune evasion by guiding synchronous expression of PD-L1 and PD-L2. Cell Reports, 2019, 29(11): 3435-3447.e4.
doi: 10.1016/j.celrep.2019.10.093
[42]   Dao L T M, Galindo-Albarrán A O, Castro-Mondragon J A, et al. Genome-wide characterization of mammalian promoters with distal enhancer functions. Nature Genetics, 2017, 49(7): 1073-1081.
doi: 10.1038/ng.3884
[43]   Diao Y, Fang R, Li B, et al. A tiling-deletion-based genetic screen for Cis-regulatory element identification in mammalian cells. Nature Methods, 2017, 14(6): 629-635.
doi: 10.1038/nmeth.4264
[44]   Engreitz J M, Haines J E, Perez E M, et al. Local regulation of gene expression by lncRNA promoters, transcription and splicing. Nature, 2016, 539(7629): 452-455.
doi: 10.1038/nature20149
[45]   Andersson R, Sandelin A. Determinants of enhancer and promoter activities of regulatory elements. Nature Reviews Genetics, 2020, 21(2): 71-87.
doi: 10.1038/s41576-019-0173-8 pmid: 31605096
[46]   Vanhille L, Griffon A, Maqbool M A, et al. High-throughput and quantitative assessment of enhancer activity in mammals by CapStarr-seq. Nature Communications, 2015, 6(1): 6905.
doi: 10.1038/ncomms7905
[47]   Qi L S, Larson M H, Gilbert L A, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 2013, 152(5): 1173-1183.
doi: 10.1016/j.cell.2013.02.022
[48]   Li Z, Zhang D, Xiong X, et al. A potent Cas9-derived gene activator for plant and mammalian cells. Nature Plants, 2017, 3(12): 930-936.
doi: 10.1038/s41477-017-0046-0
[49]   Gao X F, Tsang J C H, Gaba F, et al. Comparison of TALE designer transcription factors and the CRISPR/dCas 9 in regulation of gene expression by targeting enhancers. Nucleic Acids Research, 2014, 42(20): e155.
doi: 10.1093/nar/gku836
[50]   Hilton I B, D’Ippolito A M, Vockley C M, et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nature Biotechnology, 2015, 33(5): 510-517.
doi: 10.1038/nbt.3199 pmid: 25849900
[51]   Li K, Liu Y, Cao H, et al. Interrogation of enhancer function by enhancer-targeting CRISPR epigenetic editing. Nature Communications, 2020, 11(1): 485.
doi: 10.1038/s41467-020-14362-5
[52]   Simeonov D R, Gowen B G, Boontanrart M, et al. Discovery of stimulation-responsive immune enhancers with CRISPR activation. Nature, 2017, 549(7670): 111-115.
doi: 10.1038/nature23875
[53]   Gilbert L A, Larson M H, Morsut L, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell, 2013, 154(2): 442-451.
doi: 10.1016/j.cell.2013.06.044 pmid: 23849981
[54]   Jasenosky L D, Nambu A, Tsytsykova A V, et al. Identification of a distal locus enhancer element that controls cell type-specific TNF and LTA gene expression in human T cells. Journal of Immunology, 2020, 205(9): 2479-2488.
doi: 10.4049/jimmunol.1901311 pmid: 32978279
[55]   Kearns N A, Pham H, Tabak B, et al. Functional annotation of native enhancers with a Cas9-histone demethylase fusion. Nature Methods, 2015, 12(5): 401-403.
doi: 10.1038/nmeth.3325
[56]   Fulco C P, Nasser J, Jones T R, et al. Activity-by-contact model of enhancer-promoter regulation from thousands of CRISPR perturbations. Nature Genetics, 2019, 51(12): 1664-1669.
doi: 10.1038/s41588-019-0538-0
[57]   Shalem O, Sanjana N E, Zhang F. High-throughput functional genomics using CRISPR-Cas9. Nature Reviews Genetics, 2015, 16(5): 299-311.
doi: 10.1038/nrg3899 pmid: 25854182
[58]   Whyte W A, Orlando D A, Hnisz D, et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell, 2013, 153(2): 307-319.
doi: 10.1016/j.cell.2013.03.035
[59]   di Micco R, Fontanals-Cirera B, Low V, et al. Control of embryonic stem cell identity by BRD4-dependent transcriptional elongation of super-enhancer-associated pluripotency genes. Cell Reports, 2014, 9(1): 234-247.
doi: 10.1016/j.celrep.2014.08.055
[60]   Ing-Simmons E, Seitan V C, Faure A J, et al. Spatial enhancer clustering and regulation of enhancer-proximal genes by cohesin. Genome Research, 2015, 25(4): 504-513.
doi: 10.1101/gr.184986.114 pmid: 25677180
[61]   Niederriter A R, Varshney A, Parker S C J, et al. Super enhancers in cancers, complex disease, and developmental disorders. Genes, 2015, 6(4): 1183-1200.
doi: 10.3390/genes6041183 pmid: 26569311
[62]   Lovén J, Hoke H A, Lin C Y, et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell, 2013, 153(2): 320-334.
doi: 10.1016/j.cell.2013.03.036
[63]   Mansour M R, Abraham B J, Anders L, et al. Oncogene regulation. An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element. Science, 2014, 346(6215): 1373-1377.
doi: 10.1126/science.1259037 pmid: 25394790
[64]   Gröschel S, Sanders M A, Hoogenboezem R, et al. A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA 2 deregulation in leukemia. Cell, 2014, 157(2): 369-381.
doi: S0092-8674(14)00218-9 pmid: 24703711
[65]   Wu Z Q, Mi Z Y. Research progress of super enhancer in cancer. Hereditas (Beijing), 2019, 41(1): 41-51.
[66]   Yoshinaga M, Nakatsuka Y, Vandenbon A, et al. Regnase-1 maintains iron homeostasis via the degradation of transferrin receptor 1 and prolyl-hydroxylase-domain-containing protein 3 mRNAs. Cell Reports, 2017, 19(8): 1614-1630.
doi: S2211-1247(17)30634-4 pmid: 28538180
[67]   Yang R Y, Wu Y Y, Ming Y, et al. A super-enhancer maintains homeostatic expression of Regnase-1. Gene, 2018, 669: 35-41.
doi: 10.1016/j.gene.2018.05.052
[68]   Ri K C, Kim J S, Kim C. Identification of Klf6-related super enhancer in human hepatoma (HepG2) cells by CRISPR technique. Genetics and Molecular Research, 2017, 16(4): gmr16039841.
[69]   Ri K C, Kim K, Kong S, et al. The disruption of Klf6-related super-enhancer induces growth inhibition and apoptosis in human HepG2 cells. Genetics and Molecular Research, 2018, 17(1): gmr16039888.
[70]   Ri K C, Kim C, Pak C, et al. The KLF6 super enhancer modulates cell proliferation via miR-1301 in human hepatoma cells. microRNA (Shariqah, United Arab Emirates), 2020, 9(1): 64-69.
[71]   Salo P P, Havulinna A S, Tukiainen T, et al. Genome-wide association study implicates atrial natriuretic peptide rather than B-type natriuretic peptide in the regulation of blood pressure in the general population. Circulation Cardiovascular Genetics, 2017, 10(6): e001713.
doi: 10.1161/CIRCGENETICS.117.001713
[72]   Man J C K, van Duijvenboden K, Krijger P H L, et al. Genetic dissection of a super enhancer controlling the nppa-nppb cluster in the heart. Circulation Research, 2021, 128(1): 115-129.
doi: 10.1161/CIRCRESAHA.120.317045
[1] WU Xiu-zhi,WANG Hong-jie,ZU Yao. Functional Study of hoxa1a Regulating Craniofacial Bone Development in Zebrafish[J]. China Biotechnology, 2021, 41(9): 20-26.
[2] ZHAO Xiao-yu,XU Qi-ling,ZHAO Xiao-dong,AN Yun-fei. Enhancing Lentiviral Vector Transduction Efficiency for Facilitating Gene Therapy[J]. China Biotechnology, 2021, 41(8): 52-58.
[3] BI Bo,ZHANG Yu,ZHAO Hui. Application of Yeast Hybrid System in Study of Off-target Rate of CRISPR/Cas9 Gene Editing System[J]. China Biotechnology, 2021, 41(6): 27-37.
[4] HU Xuan,WANG Song,YU Xue-ling,ZHANG Xiao-peng. Construction of a Destabilized EGFP Cell Model for Gene Editing Evaluation[J]. China Biotechnology, 2021, 41(5): 17-26.
[5] WANG Yan-mei,KOU Hang,MA Mei,SHEN Yu-yu,ZHAO Bao-ding,LU Fu-ping,LI Ming. CRISPR/Cas9-mediated Inactivation of the Pectinase Gene in Aspergillus niger and Evaluation of the Mutant Strain[J]. China Biotechnology, 2021, 41(5): 35-44.
[6] LENG Yan,SUN Kang-tai,LIU Qian-qian,PU A-qing,LI Xiang,WAN Xiang-yuan,WEI Xun. Trends of Global Gene-edited Crops Supervision[J]. China Biotechnology, 2021, 41(12): 24-29.
[7] YANG Meng-bing,JIANG Yi-lin,ZHU Lei,AN Xue-li,WAN Xiang-yuan. CRISPR/Cas Plant Genome Editing Systems and Their Applications in Maize[J]. China Biotechnology, 2021, 41(12): 4-12.
[8] GUO Yang,CHEN Yan-juan,LIU Yi-chen,WANG Hai-jie,WANG Cheng-ji,WANG Jue,WAN Ying-han,ZHOU Yu,XI Jun,SHEN Ru-ling. Pd-1 Gene Knockout Mouse Model Construction and Preliminary Phenotype Verification[J]. China Biotechnology, 2021, 41(10): 1-11.
[9] GUO Yang,WAN Ying-han,WANG Jue,GONG Hui,ZHOU Yu,CI Lei,WAN Zhi-peng,SUN Rui-lin,FEI Jian,SHEN Ru-ling. Toll-like Receptor 4 (TLR4) Gene Knockout Mouse Model Construction and Preliminary Phenotypic Analysis[J]. China Biotechnology, 2020, 40(6): 1-9.
[10] HUANG Sheng, YAN Qi-tao, XIONG Shi-lin, PENG Yi-qi, ZHAO Rui. Construction of CHD5 Gene Overexpressing Lentiviral Vector Based on CRISPR/Cas9-SAM System and the Effect of CHD5 on Proliferation, Migration and Invasion in T24 Cells[J]. China Biotechnology, 2020, 40(3): 1-8.
[11] LEI Hai-ying,ZHAO Qing-song,BAI Feng-lin,SONG Hui-fang,WANG Zhi-jun. Identification of Developing-related Gene ZmCen Using CRISPR/Cas9 in Maize[J]. China Biotechnology, 2020, 40(12): 49-57.
[12] WANG Yue,MU Yan-shuang,LIU Zhong-hua. Progress of CRISPR/Cas Base Editing System[J]. China Biotechnology, 2020, 40(12): 58-66.
[13] WANG Wei-dong,DU Jia-ru,ZHANG Yun-shang,FAN Jian-ming. The Application of CRISPR/Cas9 in the Treatment of Human Virus Infection-Related Diseases[J]. China Biotechnology, 2020, 40(12): 18-24.
[14] WANG Zhi-min,BI Mei-yu,HE Jia-fu,Ren Bing-xu,LIU Dong-jun. Development of CRISPR/Cas9 System and Its Application in Animal Gene Editing[J]. China Biotechnology, 2020, 40(10): 43-50.
[15] Lu JIAN,Ying-hui HUANG,Tian-ya LIANG,Li-min WANG,Hong-tao MA,Ting ZHANG,Dan-yang LI,Ming-lian WANG. Generation of JAK2 Gene Knockout K562 Cell Line by CRISPR/Cas9 System[J]. China Biotechnology, 2019, 39(7): 39-47.