Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (1/2): 46-57    DOI: 10.13523/j.cb.2110034
Orginal Article     
The Review of Biosynthesis and Molecular Regulation of Xanthan Gum
JI Chuan-fu1,WANG Lu2,GOU Min1,SONG Wen-feng3,XIA Zi-yuan1,**(),TANG Yue-qin1
1 Sichuan Provincial Key Lab for Resource Utilization of Organic Waste, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
2 State Key Laboratory of Enhanced Oil Recovery, Research Institute of Petroleum Exploration and Development, CNPC, Beijing 100083, China
3 Research Institute of Petroleum Exploration and Development, CNPC, Beijing 100083, China
Download: HTML   PDF(2499KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Xanthan gum is an extracellular polysaccharide produced by genus Xanthomonas. It is widely used in food, petroleum, agriculture and other industries because of its superior rheology and stability. At present, the synthetic pathway of xanthan gum has been clarified, and its research mainly focuses on how to affect its synthesis and modification through molecular regulation to meet the needs of different industries.By introducing the primary and secondary structure, rheology, stability and biosynthetic pathway of xanthan gum, this paper summarizes the research progress on the molecular regulation of xanthan gum biosynthesis in Xanthomonas sp. The main conclusions are as follows: the existing research on molecular regulation focuses on the regulation of key genes in each stage of xanthan gum synthesis pathway, signal molecules and other factors; in the synthesis stage of xanthan gum precursor, xanthan gum production can be regulated by changing the expression of related genes involved in the conversion of glucose to phosphate sugar, the conversion of phosphate sugar precursor to nucleoside diphosphate, utilization and transport of intracellular carbohydrate; in the assembly and secretion stage of xanthan gum, the synthesis of xanthan gum can be regulated by regulating the structural proteins and promoter regulators of gum gene cluster; the regulation of signal molecule level in c-di-GMP signal network system and quorum sensing (QS) system can affect the synthesis and secretion of xanthan gum; other factors can also regulate the synthesis of xanthan gum, including genes related to lipopolysaccharide modified O-antigen, genes related to protein/metal transport and secretion, substrate competition pathways of peptidoglycan and polyhydroxyalkanoate (PHA), and hemoglobin genes. In the future, we will further explore new regulatory factors for xanthan gum biosynthesis and reveal the molecular regulatory mechanism.



Key wordsXanthan gum      Xanthomonas      Biosynthesis      Molecular regulation      c-di-GMP      Quorum sensing     
Received: 22 October 2021      Published: 03 March 2022
ZTFLH:  Q819  
Corresponding Authors: Zi-yuan XIA     E-mail: ziyuanxia@scu.edu.cn
Cite this article:

JI Chuan-fu,WANG Lu,GOU Min,SONG Wen-feng,XIA Zi-yuan,TANG Yue-qin. The Review of Biosynthesis and Molecular Regulation of Xanthan Gum. China Biotechnology, 2022, 42(1/2): 46-57.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2110034     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I1/2/46

Fig.1 Primary structure of xanthan gum
Fig.2 Synthesis pathway of xanthan gum in Xcc PGI: Glucose-6-phosphate isomerase; PGM and PMM: Glucose phosphate mutase and mannose phosphate mutase; PMI and GMP: Mannose-6-phosphate isomerase and mannose-1-phosphate aminotransferase; UGP: Utp-glucose-1-phosphate uridine transferase; UGD: UDP glucose 6-dehydrogenase
基因名称 基因功能 对黄原胶合成的调控作用 调控机制 参考文献
磷酸糖前体合成阶段
eddH 编码磷酸葡萄糖酸脱水酶 负调控 限制前体6-磷酸葡萄糖的细胞内利用率限制黄原胶合成 [20]
xoo2314 编码葡萄糖-6-磷酸脱氢酶 负调控 改变中心碳代谢的碳流量以增强黄原胶合成 [21]
oprB 编码碳水化合物转运蛋白 缺失后,黄原胶产量及黏度增加 改变中心碳代谢的碳流量以增强黄原胶合成 [22]
α-淀粉酶基因 编码嗜热α-淀粉酶 可生产耐高温的黄原胶,且产量提高 [23]
NDP-sugars合成阶段
pgi 编码黄原胶合成前体相关的葡萄糖- 6-磷酸异构酶 正调控 黄原胶合成前体合成的关键酶 [26]
pig 编码菌黄素合成相关的酶 敲除pig基因簇,黄原胶产量下降;敲除pig基因簇中的糖基转移酶基因xanK后,黄原胶产量提升 菌黄素合成与黄原胶合成存在前体竞争 [27-28]
rmd 编码尿苷二磷酸葡萄糖差向异构酶 外源导入该基因,正调控黄原胶合成 [29]
ugdH 编码UDP-葡萄糖脱氢酶 正调控 黄原胶合成前体UDP-葡糖醛酸合成的关键酶 [30]
Table 1 Regulation of key genes in xanthan gum precursor synthesis stage
基因名称 基因功能 对黄原胶合成的调控作用 调控机制 参考文献
gumD 编码糖基转移酶 高表达后,黄原胶产量、黏度、均分子质量、乙酰基含量均提高 黄原胶合成途径上的关键基因,直接影响黄原胶的合成 [31]
gumBgumC 编码黄原胶的链长及外排相关的蛋白质 高表达后,黄原胶黏度、剪切性能值提高 黄原胶合成途径上的关键基因,直接影响黄原胶的合成 [32]
hpaR1 编码结合gum基因簇启动子的HpaR1转录蛋白 正调控 转录调控,结合黄原胶合成的gum基因簇的启动子区域 [33]
vemR 编码接收结构域调控信号的VemR调控因子 正调控 作为一种仅含一个结构接受域的响应调节器,转录调控黄原胶合成基因的转录 [33]
cysB 编码结合gum基因簇启动子的CysB蛋白 正调控 转录调控,直接结合gum基因启动子区域 [34]
soxS 编码结合gum基因簇启动子的氧化应激蛋白 正调控 转录调控,直接结合gum基因启动子区域 [35]
detR 编码与防御系统和调节毒力相关的DetR蛋白 正调控 转录调控,影响其合成途径的关键基因gumD及DSF等信号通路 [36]
Table 2 Regulation of key genes in the process of xanthan synthesis and assembly
Fig.3 Regulation of xanthan gum synthesis and other virulence factors by c-di-GMP regulatory network DGC: Diguanylate cyclase; PDE: Phosphodiesterase; c-di-GMP: Cyclic diglucoside; GTP: Guanosine triphosphate; GMP: Guanosine monophosphate
基因名称 基因功能 对黄原胶合成的调控作用 调控机制 参考文献
clp 作为c-di-GMP的效应子及全局转录调节剂 正调控和负调控均有 作为全局转录因子,通过转录调控影响黄原胶合成。存在调控级联 [38]
xpsE 二型分泌系统的结构蛋白组成部分,为蛋白质分泌提供能量 正调控 转录后调控,通过为二型分泌系统结构蛋白提供能量影响黄原胶分泌过程 [39]
gdpX1 编码GdpX1蛋白,作为DGCs控制c-di-GMP的合成 正调控 作为DGCs控制c-di-GMP的合成,转录调控下游基因的表达,影响黄原胶的合成。该系统存在调控级联 [40]
dgcA 编码DgcA1蛋白,作为DGCs控制c-di-GMP的合成 正调控 作为DGCs控制c-di-GMP的合成,转录调控下游基因的表达,影响黄原胶的合成。该系统存在调控级联 [41]
edpX1 编码EdpX1蛋白,作为PDEs控制c-di-GMP的降解 负调控 作为DGCs控制c-di-GMP的降解,转录调控下游基因的表达,影响黄原胶的合成。该系统存在调控级联 [42]
vieAxoo 编码VieAxoo蛋白,作为PDEs控制c-di-GMP的降解 负调控 作为DGCs控制c-di-GMP的降解,转录调控下游基因的表达,影响黄原胶的合成。该系统存在调控级联 [42]
rpf基因簇 调节群感效应QS的信号分子DSF的水平 正调控和负调控 (1)转录调控,激活自身PDEs活性以调节c-di-GMP水平影响黄原胶合成。(2)与黄原胶竞争前体葡糖醛酸 [45-48]
ravS/ravR 组成低氧感应双组分系统,与DSF介导的QS相互作用 正调控 影响全局转录因子clp及c-di-GMP的表达水平,在转录水平调控黄原胶合成 [49]
pdeR 编码PdeR蛋白,作为PDEs控制c-di-GMP的降解 负调控 作为DGCs控制c-di-GMP的降解,转录调控下游基因的表达,影响黄原胶的合成。该系统存在调控级联 [50]
Table 3 Effects of signaling molecules regulation on xanthan gum synthesis
基因名称 基因功能 对黄原胶合成的调控作用 调控机制 参考文献
wxcA 与脂多糖改性O-抗原相关,影响LPS的生物合成 正调控 转录调控,影响黄原胶合成糖基转移的反应以及影响相关蛋白质的组装分泌和信号转导 [51]
wxoD 编码假定的o-抗原乙酰化酶,影响LPS的生物合成 负调控 减少竞争代谢LPS的合成,以增加黄原胶合成的代谢资源 [52]
wxcB 与脂多糖改性O-抗原相关,影响LPS的生物合成 负调控 减少竞争代谢LPS的合成,以增加黄原胶合成的代谢资源。 [53]
tatC 双精氨酸转运系统中的编码基因 正调控 [54]
zur 调控细菌的锌离子摄入能力 正调控 [55]
phaR 影响细菌合成聚羟基脂肪酸酯的能力 正调控 通过碳水化合物代谢影响黄原胶合成途径上的碳通量 [57]
vgb 血红蛋白编码基因,与菌体的摄氧能力相关 正调控 通过影响细菌的氧摄取能力,增强菌体体内氧代谢水平促进黄原胶的合成 [58]
xc_4097 编码脂质酰基转移酶 该基因缺失后,可产生
无色黄原胶
通过脂质代谢影响黄色素的合成,进而生产无色黄原胶 [59]
Table 4 Effects of other regulatory factors on xanthan gum synthesis
[1]   Margaritis A, Zajic J E. Mixing, mass transfer, and scale-up of polysaccharide fermentations. Biotechnology and Bioengineering, 1978, 20(7):939-1001.
doi: 10.1002/(ISSN)1097-0290
[2]   陈今朝, 贺稚非. 黄原胶的生产与应用研究. 四川食品与发酵, 2006, 42(4):12-15.
[2]   Chen J Z, He Z F. Study on production and development of xanthan gum. Sichuan Food and Fermentation, 2006, 42(4):12-15.
[3]   邱嘉辉, 何亚文. 微生物胞外多糖黄原胶的应用与研究进展. 激光生物学报, 2019, 28(5):385-393, 409.
[3]   Qiu J H, He Y W. Advances in applications and research of xanthan gum. Acta Laser Biology Sinica, 2019, 28(5):385-393, 409.
[4]   王子朝. 以甘油为底物发酵生产黄原胶及其特性和应用研究. 无锡: 江南大学, 2017.
[4]   Wang Z C. Production of xanthan gum with glycerol and the study of its properties and application. Wuxi: Jiangnan University, 2017.
[5]   Jansson P E, Kenne L, Lindberg B. Structure of the extracellular polysaccharide from Xanthomonas campestris. Carbohydrate Research, 1975, 45(1):275-282.
doi: 10.1016/S0008-6215(00)85885-1
[6]   王德润, 于宪潮, 赵大健, 等. 黄原胶分子量的研究. 高等学校化学学报, 1990, 11(7):789-791.
[6]   Wang D R, Yu X C, Zhao D J, et al. A study of the molecular weight of xanthan. Chemical Research in Chinese Universities, 1990, 11(7):789-791.
[7]   周盛华. 黄原胶在水溶液中的构象转变及其流变学研究. 上海: 上海交通大学, 2008.
[7]   Zhou S H. Conformation transition of xanthan in aqueous solution and its rheological research. Shanghai: Shanghai Jiao Tong University, 2008.
[8]   刁虎欣, 梁凤来, 梁兴杰, 等. NK-01黄原胶和长角豆半乳甘露聚糖分子间的协效性研究. 南开大学学报(自然科学版), 2001, 34(1):10-12.
[8]   Diao H X, Liang F L, Liang X J, et al. Studies on the synergism of intermolecular interaction of xanthan NK-01 and galactomannan. Journal of Nankai University, 2001, 34(1):10-12.
[9]   Takahashi M, Hatakeyama T, Hatakeyama H. Phenomenological theory describing the behaviour of non-freezing water in structure formation process of polysaccharide aqueous solutions. Carbohydrate Polymers, 2000, 41(1):91-95.
doi: 10.1016/S0144-8617(99)00114-9
[10]   Ielpi L, Couso R O, Dankert M A. Pyruvic acid acetal residues are transferred from phosphoenolpyruvate to the pentasaccharide-P-P-lipid. Biochemical and Biophysical Research Communications, 1981, 102(4):1400-1408.
pmid: 7317056
[11]   吴乐, 徐同台, 韩斅, 等. 黄原胶高温稳定性的影响因素. 钻井液与完井液, 2011, 28(6):77-80, 97.
[11]   Wu L, Xu T T, Han X, et al. Research on high temperature stability effects of xanthan gum. Drilling Fluid & Completion Fluid, 2011, 28(6):77-80, 97.
[12]   赵谋明, 叶林, 李少霞, 等. 黄原胶与其它食品胶协同增效作用及其耐盐稳定性的研究. 食品与发酵工业, 1999, 25(2):12-16,20.
[12]   Zhao M M, Ye L, Li S X, et al. Study on synergistic interaction and stability of salt tolerance between xanthan gum and other common food gums. Food and Fermentation Industries, 1999, 25(2):12-16,20.
[13]   Tako M. Synergistic interaction between deacylated xanthan and galactomannan. Journal of Carbohydrate Chemistry, 1991, 10(4):619-633.
doi: 10.1080/07328309108543936
[14]   Ielpi L, Couso R O, Dankert M A. Sequential assembly and polymerization of the polyprenol-linked pentasaccharide repeating unit of the xanthan polysaccharide in Xanthomonas campestris. Journal of Bacteriology, 1993, 175(9):2490-2500.
pmid: 7683019
[15]   Becker A, Katzen F, Pühler A, et al. Xanthan gum biosynthesis and application: a biochemical/genetic perspective. Applied Microbiology and Biotechnology, 1998, 50(2):145-152.
pmid: 9763683
[16]   Schatschneider S, Huber C, Neuweger H, et al. Metabolic flux pattern of glucose utilization by Xanthomonas campestris pv. campestris: prevalent role of the Entner-Doudoroff pathway and minor fluxes through the pentose phosphate pathway and glycolysis. Molecular BioSystems, 2014, 10(10):2663-2676.
doi: 10.1039/c4mb00198b pmid: 25072918
[17]   谭旖宁, 彭方印, 安世琦, 等. 野油菜黄单胞菌2-酮-3-脱氧-6-磷酸葡萄糖酸醛缩酶基因的突变分析. 广西农业生物科学, 2008, 27(4):349-353.
[17]   Tan Y N, Peng F Y, An S Q, et al. Elementary analysis of 2-keto-3-deoxy-6-phospho-gluconate aldolase gene of Xanthomonas campestris. Journal of Guangxi Agricultural and Biological Science, 2008, 27(4):349-353.
[18]   Freitas F, Alves V D, Reis M A M. Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends in Biotechnology, 2011, 29(8):388-398.
doi: 10.1016/j.tibtech.2011.03.008
[19]   Vorhölter F J, Schneiker S, Goesmann A, et al. The genome of Xanthomonas campestris pv. campestris B100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis. Journal of Biotechnology, 2008, 134(1-2):33-45.
doi: 10.1016/j.jbiotec.2007.12.013
[20]   Kim S Y, Lee B M, Cho J Y. Relationship between glucose catabolism and xanthan production in Xanthomonas oryzae pv. oryzae. Biotechnology Letters, 2010, 32(4):527-531.
doi: 10.1007/s10529-009-0193-0
[21]   Jang S G, Lee B M, Cho J Y. Effect of modified glucose catabolism on xanthan production in Xanthomonas oryzae pv. oryzae. Journal of Industrial Microbiology and Biotechnology, 2012, 39(4):649-654.
doi: 10.1007/s10295-011-1056-y
[22]   Ficarra F A, Grandellis C, Galván E M, et al. Xanthomonas citri ssp. citri requires the outer membrane porin OprB for maximal virulence and biofilm formation. Molecular Plant Pathology, 2017, 18(5):720-733.
doi: 10.1111/mpp.2017.18.issue-5
[23]   Konsoula Z, Liakopoulou-Kyriakides M, Perysinakis A, et al. Heterologous expression of a hyperthermophilic α-amylase in xanthan gum producing Xanthomonas campestris cells. Applied Biochemistry and Biotechnology, 2008, 149(2):99-108.
doi: 10.1007/s12010-007-8115-x pmid: 18401740
[24]   Yang T C, Wu G H, Tseng Y H. Isolation of a Xanthomonas campestris strain with elevated beta-galactosidase activity for direct use of lactose in xanthan gum production. Letters in Applied Microbiology, 2002, 35(5):375-379.
pmid: 12390484
[25]   Lu G T, Tang Y Q, Li C Y, et al. An adenosine kinase exists in Xanthomonas campestris pathovar campestris and is involved in extracellular polysaccharide production, cell motility, and virulence. Journal of Bacteriology, 2009, 191(11):3639-3648.
doi: 10.1128/JB.00009-09
[26]   Guo W, Zou L F, Ji Z Y, et al. Glucose 6-phosphate isomerase (Pgi) is required for extracellular polysaccharide biosynthesis, DSF signals production and full virulence of Xanthomonas oryzae pv. oryzicola in rice. Physiological and Molecular Plant Pathology, 2017, 100:209-219.
doi: 10.1016/j.pmpp.2017.10.010
[27]   Poplawsky A R, Chun W. pigB determines a diffusible factor needed for extracellular polysaccharide slime and xanthomonadin production in Xanthomonas campestris pv. campestris. Journal of Bacteriology, 1997, 179(2):439-444.
pmid: 8990296
[28]   Cao X Q, Wang J Y, Zhou L, et al. Biosynthesis of the yellow xanthomonadin pigments involves an ATP-dependent 3-hydroxybenzoic acid: acyl carrier protein ligase and an unusual type II polyketide synthase pathway. Molecular Microbiology, 2018, 110(1):16-32.
doi: 10.1111/mmi.2018.110.issue-1
[29]   何勇强, 唐纪良, 姜伯乐, 等. 一个可提高黄原胶产量的基因:中国, CN100529086C. 2009-08-19.[2022-01-23]. https://www.zhuanlichaxun.net/d-8654603.html.
[29]   He Y Q, Tang J L, Jiang B L, et al. A gene that can increase the yield of xanthan gum: China, CN100529086C. 2009-08-19.[2022-01-23]. https://www.zhuanlichaxun.net/d-8654603.html.
[30]   蔡文侠, 黄光辉, 王婷婷, 等. 水稻细菌性条斑病菌一个假定的udgH基因的功能研究. 广西师范大学学报(自然科学版), 2014, 32(3):109-115.
[30]   Cai W X, Huang G H, Wang T T, et al. Functional analysis of a hypothetical udgH gene in Xanthomona oryzae pv.oryzicola. Journal of Guangxi Normal University (Natural Science Edition), 2014, 32(3):109-115.
[31]   王桂兰, 张晓元, 陈晓燕, 等. 野油菜黄单胞菌中gumD基因的过表达对产黄原胶的影响. 中国生化药物杂志, 2012, 33(2):106-109.
[31]   Wang G L, Zhang X Y, Chen X Y, et al. Effect of by overexpressing gumD in Xanthomonas campestris on the xanthan gum. Chinese Journal of Biochemical Pharmaceutics, 2012, 33(2):106-109.
[32]   张晓元, 陈晓燕, 颜震, 等. 产高黏性黄原胶基因工程菌株的构建. 食品与药品, 2011, 13(3):83-85.
[32]   Zhang X Y, Chen X Y, Yan Z, et al. Construction of recombinant strain producing high viscosity xanthan gum. Food and Drug, 2011, 13(3):83-85.
[33]   Tao J, He C Z. Response regulator, VemR, positively regulates the virulence and adaptation of Xanthomonas campestris pv. campestris. FEMS Microbiology Letters, 2010, 304(1):20-28.
doi: 10.1111/fml.2010.304.issue-1
[34]   Schulte F, Leβmeier L, Voss J, et al. Regulatory associations between the metabolism of sulfur-containing amino acids and xanthan biosynthesis in Xanthomonas campestris pv. campestris B100. FEMS Microbiology Letters, 2019, 366(2):2-11.
[35]   Rao Y M, Sureshkumar G K. Improvement in bioreactor productivities using free radicals: HOCl-induced overproduction of xanthan gum from Xanthomonas campestris and its mechanism. Biotechnology and Bioengineering, 2001, 72(1):62-68.
pmid: 11084595
[36]   Nguyen M P, Park J, Cho M H, et al. Role of DetR in defence is critical for virulence of Xanthomonas oryzae pv.oryzae. Molecular Plant Pathology, 2016, 17(4):601-613.
doi: 10.1111/mpp.12305
[37]   Dow J M, Fouhy Y, Lucey J F, et al. The HD-GYP domain, cyclic di-GMP signaling, and bacterial virulence to plants. Molecular Plant-Microbe Interactions: MPMI, 2006, 19(12):1378-1384.
doi: 10.1094/MPMI-19-1378
[38]   de Crecy-Lagard V, Glaser P, Lejeune P, et al. A Xanthomonas campestris pv. campestris protein similar to catabolite activation factor is involved in regulation of phytopathogenicity. Journal of Bacteriology, 1990, 172(10):5877-5883.
pmid: 2170330
[39]   Ge C, He C Z. Regulation of the type II secretion structural gene xpsE in Xanthomonas campestris pathovar campestris by the global transcription regulator Clp. Current Microbiology, 2008, 56(2):122-127.
doi: 10.1007/s00284-007-9081-9
[40]   Yang F, Qian S, Tian F, et al. The GGDEF-domain protein GdpX1 attenuates motility, exopolysaccharide production and virulence in Xanthomonas oryzae pv. oryzae. Journal of Applied Microbiology, 2016, 120(6):1646-1657.
doi: 10.1111/jam.13115 pmid: 26929398
[41]   Zhou H, Zheng C, Su J M, et al. Characterization of a natural triple-tandem c-di-GMP riboswitch and application of the riboswitch-based dual-fluorescence reporter. Scientific Reports, 2016, 6:20871.
doi: 10.1038/srep20871
[42]   Xue D R, Tian F, Yuan F H, et al. Phosphodiesterase EdpX1 promotes virulence, exopolysaccharide production and biofilm formation in Xanthomonas oryzae pv. oryzae. Applied and Environmental Microbiology, 2018, 84(22):17-18.
[43]   Zhou L, Zhang L H, Cámara M, et al. The DSF family of quorum sensing signals: diversity, biosynthesis, and turnover. Trends in Microbiology, 2017, 25(4):293-303.
doi: 10.1016/j.tim.2016.11.013
[44]   周莲, 王杏雨, 何亚文. 植物病原黄单胞菌DSF信号依赖的群体感应机制及调控网络. 中国农业科学, 2013, 46(14):2910-2922.
[44]   Zhou L, Wang X Y, He Y W. DSF signal-dependent quorum sensing in plant pathogenic bacteria Xanthomonas. Scientia Agricultura Sinica, 2013, 46(14):2910-2922.
[45]   Wang X Y, Zhou L, Yang J, et al. The RpfB-dependent quorum sensing signal turnover system is required for adaptation and virulence in rice bacterial blight pathogen Xanthomonas oryzae pv. oryzae. Molecular Plant-Microbe Interactions: MPMI, 2016, 29(3):220-230.
doi: 10.1094/MPMI-09-15-0206-R
[46]   Zhou L, Wang X Y, Sun S, et al. Identification and characterization of naturally occurring DSF-family quorum sensing signal turnover system in the phytopathogen Xanthomonas. Environmental Microbiology, 2015, 17(11):4646-4658.
doi: 10.1111/1462-2920.12999
[47]   Godoy H, Vaddadi P, Cooper M, et al. Photodynamic therapy effectively palliates gynecologic malignancies. European Journal of Gynaecological Oncology, 2013, 34(4):300-302.
pmid: 24020133
[48]   Park I S, Mondal A, Chung P S, et al. Vascular regeneration effect of adipose-derived stem cells with light-emitting diode phototherapy in ischemic tissue. Lasers in Medical Science, 2015, 30(2):533-541.
doi: 10.1007/s10103-014-1699-9
[49]   He Y W, Boon C, Zhou L, et al. Co-regulation of Xanthomonas campestris virulence by quorum sensing and a novel two-component regulatory system RavS/RavR. Molecular Microbiology, 2009, 71(6):1464-1476.
doi: 10.1111/mmi.2009.71.issue-6
[50]   Yang F H, Tian F, Sun L, et al. A novel two-component system PdeK/PdeR regulates c-di-GMP turnover and virulence of Xanthomonas oryzae pv. oryzae. Molecular Plant-Microbe Interactions, 2012, 25(10):1361-1369.
doi: 10.1094/MPMI-01-12-0014-R
[51]   陆光涛, 唐纪良, 危广宁, 等. 野油菜黄单胞菌野油菜致病变种8004菌株wxcA基因与EPS的产量有关. 生物工程学报, 2004, 20(4):477-483.
[51]   Lu G T, Tang J L, Wei G N, et al. The gene wxcA of Xanthomonas campestris pv.campestris 8004 strain involved in EPS yield. Chinese Journal of Biotechnology, 2004, 20(4):477-483.
[52]   Nam J Y, Kim H I, Lee C S, et al. A mutation in the Xanthomonas oryzae pv. oryzae wxoD gene affects xanthan production and chemotaxis. Biotechnology Letters, 2013, 35(11):1913-1918.
doi: 10.1007/s10529-013-1285-4
[53]   Steffens T, Vorhölter F J, Giampà M, et al. The influence of a modified lipopolysaccharide O-antigen on the biosynthesis of xanthan in Xanthomonas campestris pv. campestris B100. BMC Microbiology, 2016, 16:93.
doi: 10.1186/s12866-016-0710-y pmid: 27215401
[54]   Chen L, Hu B S, Qian G L, et al. Identification and molecular characterization of twin-arginine translocation system (Tat) in Xanthomonas oryzae pv. oryzae strain PXO99. Archives of Microbiology, 2009, 191(2):163-170.
doi: 10.1007/s00203-008-0440-0 pmid: 18998110
[55]   Tang D J, Li X J, He Y Q, et al. The zinc uptake regulator Zur is essential for the full virulence of Xanthomonas campestris pv. campestris. Molecular Plant-Microbe Interactions: MPMI, 2005, 18(7):652-658.
doi: 10.1094/MPMI-18-0652
[56]   Li O, Liu A, Lu C, et al. Increasing viscosity and yields of bacterial exopolysaccharides by repeatedly exposing strains to ampicillin. Carbohydrate Polymers, 2014, 110:203-208.
doi: 10.1016/j.carbpol.2014.03.069
[57]   Long J Y, Song K L, He X, et al. Mutagenesis of PhaR, a regulator gene of polyhydroxyalkanoate biosynthesis of Xanthomonas oryzae pv. oryzae caused pleiotropic phenotype changes. Frontiers in Microbiology, 2018, 9:3046.
doi: 10.3389/fmicb.2018.03046
[58]   郭晓军, 周艳芬, 朱宝成, 等. 透明颤菌血红蛋白基因的导入对黄原胶合成的影响. 河北农业大学学报, 2007, 30(1):68-70, 75.
[58]   Guo X J, Zhou Y F, Zhu B C, et al. Effect of transgenic Vitreoscilla hemoglobin gene on xanthan gum biosynthesis. Journal of Agricultural University of Hebei, 2007, 30(1):68-70, 75.
[59]   杨国奎, 祁艳华, 朱艳宁, 等. 十字花科黑腐病菌中一个与黄色素合成相关基因的鉴定. 基因组学与应用生物学, 2014, 33(4):802-807.
[59]   Yang G K, Qi Y H, Zhu Y N, et al. Identification of a gene involved in pigment synthesis in Xanthomonas campestris pv. campestris. Genomics and Applied Biology, 2014, 33(4):802-807.
[1] ZHANG Heng,LIU Hui-yan,PAN Lin,WANG Hong-yan,LI Xiao-fang,WANG Tong,FANG Hai-tian. Research Strategy for Biosynthesis of Gamma Aminobutyric Acid[J]. China Biotechnology, 2021, 41(8): 110-119.
[2] MIAO Yi-nan,LI Jing-zhi,WANG Shuai,LI Chun,WANG Ying. Research Progress of Key Enzymes in Terpene Biosynthesis[J]. China Biotechnology, 2021, 41(6): 60-70.
[3] LI Bing,ZHANG Chuan-bo,SONG Kai,LU Wen-yu. Research Progress in Biosynthesis of Rare Ginsenosides[J]. China Biotechnology, 2021, 41(6): 71-88.
[4] ZHAI Jun-ye,CHENG Xu,SUN Ze-min,LI Chun,LV Bo. Current Advances in Biosynthesis of Acteoside[J]. China Biotechnology, 2021, 41(5): 94-104.
[5] ZHENG Yi,GUO Shi-ying,SUI Feng-xiang,YANG Qi-yu,WEI Ya-xuan,LI Xiao-yan. Applications of Quorum Sensing Systems in Synthetic Biology[J]. China Biotechnology, 2021, 41(11): 100-109.
[6] WANG Guang-lu, WANG Meng-yuan, ZHOU Yi-fei, MA Ke, ZHANG Fan, YANG Xue-peng. Research Progress in Pyrrologuinoline Quinone Biosynthesis[J]. China Biotechnology, 2021, 41(1): 103-113.
[7] GUO Er-peng, ZHANG Jian-zhi, SI Tong. Recent Advances in the High-throughput Engineering of Lanthipeptides[J]. China Biotechnology, 2021, 41(1): 30-41.
[8] LIU Xiao-chen, FAN Dai-di, YANG Fan, WU Zhan-sheng. Advances in Microbial Production of Ginsenoside and Its Derivatives[J]. China Biotechnology, 2021, 41(1): 80-93.
[9] DUAN Hai-rong,WEI Sai-jin,LI Xun-hang. Advances in Rhamnolipid Biosynthesis by Pseudomonas aeruginosa Research[J]. China Biotechnology, 2020, 40(9): 43-51.
[10] DENG Ting-shan,WU Guo-gan,SUN Yu,TANG Xue-ming. Advances in Biosynthesis of Phenyllactic Acid[J]. China Biotechnology, 2020, 40(9): 62-68.
[11] YAN Wei-huan,HUANG Tong,HONG Jie-fang,MA Yuan-yuan. Recent Advances in Butanol Biosynthesis of Escherichia coli[J]. China Biotechnology, 2020, 40(9): 69-76.
[12] XUE Yan-ting,WU Sheng-bo,XU Cheng-yang,YUAN Bo-xin,YANG Shu-juan,LIU Jia-heng,QIAO Jian-jun,ZHU Hong-ji. Research Progress on the Quorum Sensing in the Dynamic Metabolic Regulation[J]. China Biotechnology, 2020, 40(6): 74-83.
[13] Meng-ying OU,Xiao-zheng WANG,Shuang-jun LIN,Tong-wei GUAN,Yi-jin LIN. A Review of Studies on Streptonigrin[J]. China Biotechnology, 2019, 39(7): 100-107.
[14] Shuo XU,Wen-yu LU. Progress of Heterologous Biosynthesis of Terpenoids in Engineered Corynebacterium glutamicum[J]. China Biotechnology, 2019, 39(6): 91-96.
[15] Si-li YU,Xue LIU,Zhao-yu ZHANG,Hong-jian YU,Guang-rong ZHAO. Advances of Betalains Biosynthesis and Metabolic Regulation[J]. China Biotechnology, 2018, 38(8): 84-91.