Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (7): 100-107    DOI: 10.13523/j.cb.20190714
    
A Review of Studies on Streptonigrin
Meng-ying OU1,Xiao-zheng WANG2,Shuang-jun LIN2,Tong-wei GUAN1,**(),Yi-jin LIN1
1 Xihua University Institute of Microbiology, School of Food Science and Biotechnology, Xihua University,Chengdu 610039,China
2 State Key Laboratory of Microbial Metabolism, School of Life Science and Technology, Shanghai Jiaotong University, Shanghai 200240,China
Download: HTML   PDF(988KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Streptonigrin (STN) is an anti-tumor antibiotic with a unique aminoquinolinium structure produced by Streptomyces flocculus, which has good control effect and broad application prospects in cancer treatment. However, the clinical application of STN has been limited because of its relatively significant myelosuppression side effect.The anti-tumor mechanism, structural features and existing knowledge related to the biosynthesis of streptonigrin and its analogs, including research status and prospects of reducing toxic side effects have been summarized, and providing a scientific reference for the development of low or non-toxic streptonigrin and its analogues.



Key wordsStreptomycin      Genetic toxicity      Structural characteristics      Biosynthesis     
Received: 15 December 2018      Published: 05 August 2019
ZTFLH:  Q819  
Corresponding Authors: Tong-wei GUAN     E-mail: guantongweily@163.com
Cite this article:

Meng-ying OU,Xiao-zheng WANG,Shuang-jun LIN,Tong-wei GUAN,Yi-jin LIN. A Review of Studies on Streptonigrin. China Biotechnology, 2019, 39(7): 100-107.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20190714     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I7/100

Fig.1 Three representative compounds of the streptonigrin family
Fig.2 Two possible biosynthetic pathways based on isotope feeding
Fig.3 The map of the streptonigrin biosynthetic gene cluster (including 55 ORFs which located in 65.5kb DNA fragment)
Fig. 4 The gene cluster and pathway of streptonigrinbiosynthesis
[1]   Qian T L, Wo J, Zhang Y , et al. Crystal structure of StnA for the biosynthesis of antitumor drug streptonigrin reveals a unique substrate binding mode. Scientific Reports, 2017,7:40254.
doi: 10.1038/srep40254
[2]   Heikal A, Hards K, Cheung C Y , et al. Activation of type II NADH dehydrogenase by quinolinequinones mediates antitubercular cell death. Journal of Antimicrobial Chemotherapy, 2016,71(10):2840-2847.
doi: 10.1093/jac/dkw244
[3]   Kadela-Tomanek M, Pawelczak B, Jastrzgbska M , et al. Structural,vibrational and quantum chemical investigations for 6,7dichloro-2-methyl-5,8-quinolinedione. Cytotoxic and molecular docking studies. Journal of Molecular Structure, 2018,1168:73-83.
doi: 10.1016/j.molstruc.2018.05.031
[4]   Testoni M I, Bolzán A D, Bianchi M S , et al. Effects of antioxidants on streptonigrin-induced DNA damage and clastogenesis in CHO cells. Mutation Research, 1997,373(2):201-206.
doi: 10.1016/S0027-5107(96)00198-4
[5]   Testoni M I, Bianchi N O, Bianchi M S . The kinetics of chromosome and DNA damage by streptonigrin in CHO cells. Mutation Research, 1995,334(1):23-31.
doi: 10.1016/0165-1161(95)90027-6
[6]   Andersson R C . Induction of sister-chromatid exchanges by streptonigrin, an antibiotic and antineoplastic agent. Hereditas, 1981,95(1):141-148.
[7]   DuFrain R J, Littlefield L G, Morrison W D , et al. Evaluation of chemically induced cytogenetic lesions in rabbit oocytes.III.A post-implantation analysis of streptonigrin effects. Mutation Research, 1984,127(1):73-79.
doi: 10.1016/0027-5107(84)90142-8
[8]   Cadieux B, Colavecchio A, Jeukens J , et al. Prophage induction reduces shiga toxin producing Escherichia coli (STEC) and salmonella entericaon tomatoes and spinach: a model study. Food Control, 2018,89:250-259.
doi: 10.1016/j.foodcont.2018.02.001
[9]   Cone R, Hasan S, Lown J . The mechanism of the degradation of DNA by streptonigrin. Canadian Journal of Biochemistry, 1976,54(3):219-223.
doi: 10.1139/o76-034
[10]   Rao K V, Cullen W P . Streptonigrin,an antitumor substance.I.Isolation and characterization. Antibiotics Annual, 1959,2010(3):950-953.
[11]   Brazhnikova M G, Ponomarenko V I, Kovsharova I N , et al. Study on bruneomycin produced by act.albus var.Bruneomycini and its identification with streptonigrin. Antibiot Khimioter, 1968,13(2):99-102.
[12]   Malkina N D, DudnikIu V, Lysenkova L N , et al. Induction of antibiotic formation by inactive cultures of actinomycetes.A mutant strain of Streptomyces helvaticus,a new producer of bruneomycin. Antibiot Khimioter, 1995,40(6):3-6.
[13]   Wang H S, Yeo S L, Xu J , et al. Isolation of streptonigrin and its novel derivative from Micromonospora as inducing agents of p53-dependent cell apoptosis. Journal of Natural Products, 2002,65(5):721-724.
doi: 10.1021/np0104572
[14]   Jin Y Y, Yoon T M, Kim W K , et al. Kitasatospora sp.MJM383 strain producing two antitumor agents,streptonigrin and oxopropaline G. Journal of Microbiology and Biotechnology, 2005,15(5):1140-1145.
[15]   Sugiura Y, Kuwahara J, Suzuki T . DNA interaction and nucleotide sequence cleavage of copper-streptonigrin. Biochimicaet Biophysica Acta, 1984,782(3):254-261.
doi: 10.1016/0167-4781(84)90060-5
[16]   Anderberg P I, Harding M M . The effect of metal ions on the electrochemistry of the antitumor antibiotic streptonigrin. Journal of Inorganic Biochemistry, 2004,98(5):720-726.
doi: 10.1016/j.jinorgbio.2003.10.011
[17]   Yamashita Y, Kawada S, Fujii N , et al. Induction of mammalian DNA topoisomerase II dependent DNA cleavage by antitumor antibiotic streptonigrin. Cancer Research, 1990,50(18):5841-5844.
[18]   Gavriil M, Tsao C C, Mandiyan S , et al. Specific IKK beta inhibitor IV blocks streptonigrin-induced NF-kappa B activity and potentiates its cytotoxic effect on cancer cells. Molecular Carcinogenesis, 2009,48(8):678-684.
doi: 10.1002/mc.v48:8
[19]   Beall H D, Murphy A M, Siegel D , et al. Nicotinamide adenine dinucleotide (phosphate):quinoneoxidoreductase(DT-diaphorase) as a target for bioreductive antitumor quinones: quinone cytotoxicity and selectivity in human lung and breast cancer cell lines. Molecular Pharmacology, 1995,48(3):499-504.
[20]   Cohen M M, Shaw M W, Craig A P . The effects of streptonigrin on cultured human leukocytes. Proceedings of the National Academy of Sciences, 1963,50(50):16-24.
doi: 10.1073/pnas.50.1.16
[21]   Sanchez J, Bianchi M S, Ciancio V R , et al. Analysis of spontaneous and streptonigrin-induced sister chromatid exchanges in peripheral iymphocytes of aircrew members of international flights. Journal of Environmental Pathology Toxicology and Oncology, 2008,27(4):277-285.
doi: 10.1615/JEnvironPatholToxicolOncol.v27.i4
[22]   Mencucci M V, Bravo M V, Bianchi M S , et al. Streptonigrin induces delayed chromosomal instability involving interstitial telomeric sequences in chinese hamster ovary cells.Mutation Research-Genetic Toxicology and Environmental Mutagenesis, 2012,747(1):46-52.
[23]   Dreyton C J, Anderson E D, Subramanian V , et al. Insights into the mechanism of streptonigrin-induced protein arginine deiminase inactivation. Bioorganic & Medicinal Chemistry, 2014,22(4):1362-1369.
[24]   Park S, Chun S . Streptonigrin inhibits beta-Catenin/Tcf signaling and shows cytotoxicity in beta-catenin-activated cells. Biochimicaet Biophysica Acta, 2011,1810(12):1340-1345.
doi: 10.1016/j.bbagen.2011.06.023
[25]   Khandoga N, Pohl U . Gap junction communications promote streptonigrin-induced apoptosis in HeLa cells. Journal of Vascular Research, 2006,43(1):50.
[26]   Ambaye N, Chen C H, Khanna S , et al. Streptonigrininhibits SENP1 and reduces the protein level of hypoxia-inducible factor 1 alpha (HIF1 alpha) in cells. Biochemistry, 2018,57(11):1807-1813.
doi: 10.1021/acs.biochem.7b00947
[27]   Lewis A M, Ough M, Du J , et al. Targeting NAD(P)H: quinoneoxidoreductase (nqo1) pancreatic cancer. Molecular Carcinogenesis, 2017,56(7):215-224.
[28]   Gavriil M, Tsao C C, Mandiyan S , et al. Specific IKK beta inhibitor IV blocks streptonigrin-induced NF-kappa B activity and potentiates its cytotoxic effect on cancer cells. Molecular Carcinogenesis, 2009,48(8):678-684.
doi: 10.1002/mc.v48:8
[29]   Gutteridge J M . Streptonigrin-induced deoxyribosedegradation:inhibition by superoxide dismutase,hydroxylradical scavengers and ironchelators. Biochemical Pharmacology, 1984,33(19):3059-3062.
doi: 10.1016/0006-2952(84)90609-9
[30]   Krishna M C, Halevy R F, Zhang R , et al. Modulation of streptonigrincytotoxicitybynitroxide SOD mimics. Free Radical Biology &Medicine, 1994,17(5):379-388.
[31]   DeGraff W, Hahn S M, Mitchell J B , et al. Free radical modes of cytotoxicity of adriamycinandstreptonigrin. Biochemical Pharmacology, 1994,48(7):1427-1435.
doi: 10.1016/0006-2952(94)90567-3
[32]   Kadela-Tomanek M, Jastrzebska M, Bebenek E , et al. Newacetylenic amine derivatives of 5,8-quinolinediones: synthesis,crystal structure and antiproliferative activity. Crystals, 2017,7(1):15.
doi: http://www.mdpi.com/2073-4352/7/1/15
[33]   Rao K V, Biemann K, Woodward R B . The structure of streptonigrin.Journal of The American Chemical Society. 1963,85(16):2532-2533.
doi: http://pubs.acs.org/doi/abs/10.1021/ja00899a051
[34]   Bringmann G, Reichert M, Hemberger Y . The absolute configuration of streptonigrin. Tetrahedron, 2008,64(3):515-521.
doi: 10.1016/j.tet.2007.11.015
[35]   Gould S J, Chang C C . Streptonigrinbiosynthesis.1.origin of the 4-phenylpicolinic acid moiety. Journal of The American Chemical Society, 1977,99(16):5496-5497.
doi: 10.1021/ja00458a052
[36]   Gould S J, Darling D S . Streptonigrin biosynthesis.2.the isolation of β-methyltryptophanand its intermediacy in the streptonigrin pathway. Tetrahedron Letters, 1978,19(35):3207-3210.
doi: 10.1016/S0040-4039(01)85595-7
[37]   Gould S J, Chang C C . Streptonigrin biosynthesis.3. determination of the primary precursors to the 4-phenylpicolinic acid portion. Journal of The American Chemical Society, 1980,102(5):1702-1706.
doi: 10.1021/ja00525a039
[38]   Gould S J, Chang C C, Darling D S . Streptonigrinbiosynthesis.4.details of the tryptophan metabolism. Journal of The American Chemical Society, 1980,102(5):1707-1712.
doi: 10.1021/ja00525a040
[39]   Xu F, Kong D K, He X Y , et al. Characterization of streptonigrin biosynthesis reveals a cryptic carboxyl methylation and an unusual oxidative cleavage of a N-C Bond. Journal of The American Chemical Society, 2013,135(5):1739-1748.
doi: 10.1021/ja3069243
[40]   Wu S F, Huang T T, Xie D , et al. Xantholipin B produced by the StnR inactivation mutant Streptomyces flocculus CGMCC 4.1223 WJN-1. Journal of Antibiotics, 2017,70(1):90-95.
doi: 10.1038/ja.2016.60
[41]   Wo J, Kong D K, Brock N L , et al. Transformation of streptonigrin to streptonigrone:flavin reductase-mediated flavin-catalyzed concomitant oxidative decarboxylation of picolinic acid derivatives. American Chemical Society Catalysis, 2016,6(5):2831-2835.
[42]   Kong D K, Zou Y, Zhang Z , et al. Identification of (2S,3S)-beta-methyltryptophan as the real biosynthetic intermediate of antitumor agent streptonigrin. Scientific Reports, 2016,6:20273.
[43]   Kadela M, Jastrzebska M, Bebenek E , et al. Synthesis,structure and cytotoxic activity of mono- and dialkoxy derivatives of 5,8-quinolinedione. Molecules, 2016,21(2):156.
doi: 10.3390/molecules21020156
[44]   Sandelier M J , DeShong P.Reductive cyclization of o-nitrophenylpropargyl alcohols: facile synthesis of substituted quinolines. Organic Letters, 2007,9(17):3209-3212.
doi: 10.1021/ol0710921
[45]   Zhang X, Xu X F, Yu L T , et al. Three-component reactions of aldehydes, amines,and alkynes/alkenes catalyzed by trifluoromethanesulfonic acid:an efficient route to substituted quinolines. Asian Journal of Organic Chemistry, 2014,3(3):281-284.
doi: 10.1002/ajoc.v3.3
[46]   Borel C R, Barbosa L C A, Maltha C R A , et al. A facile one-pot synthesis of 2-(2-pyridyl)quinolines via Povarov reaction. Tetrahedron Letters, 2015,56(5):662-665.
doi: 10.1016/j.tetlet.2014.12.016
[47]   McElroy W T, DeShong P . Synthesis of the CD-ring of the anticancer agent streptonigrin:studies of aryl-aryl coupling methodologies. Tetrahedron, 2006,62(29):6945-6954.
doi: 10.1016/j.tet.2006.04.074
[48]   Chan B K, Ciufolini M A . Total synthesis of streptonigrone. Journal of Organic Chemistry, 2007,72(22):8489-8495.
doi: 10.1021/jo701435p
[49]   Cai W, Hassani M, Karki R , et al. Synthesis,metabolism and in vitro cytotoxicity studies on novel iavendamycin antitumor agents. Bioorganic & Medicinal Chemistry, 2010,18(5):1899-1909.
[50]   Mandewale M C, Thorat B, Patil U , et al. Developments in quinoline synthesis:a review. Heterocyclic Letters, 2015,5(3):475-488.
[51]   Burke P J, Toki B E, Meyer D W , et al. Novelimmunoconjugates comprised of streptonigrin and 17-amino-geldanamycin attached via a dipeptide-p-aminobenzyl-amine linker system. Bioorganic & Medicinal Chemistry Letters, 2009,19(10):2650-2653.
[52]   Xia X, Lin S J, Xia X X , et al. Significance of agitation-induced shear stress on mycelium morphology and lavendamycin production by engineered Streptomyces flocculus. Applied Microbiology and Biotechnology, 2014,98(10):4399-4407.
doi: 10.1007/s00253-014-5555-4
[1] ZHANG Heng,LIU Hui-yan,PAN Lin,WANG Hong-yan,LI Xiao-fang,WANG Tong,FANG Hai-tian. Research Strategy for Biosynthesis of Gamma Aminobutyric Acid[J]. China Biotechnology, 2021, 41(8): 110-119.
[2] LI Bing,ZHANG Chuan-bo,SONG Kai,LU Wen-yu. Research Progress in Biosynthesis of Rare Ginsenosides[J]. China Biotechnology, 2021, 41(6): 71-88.
[3] MIAO Yi-nan,LI Jing-zhi,WANG Shuai,LI Chun,WANG Ying. Research Progress of Key Enzymes in Terpene Biosynthesis[J]. China Biotechnology, 2021, 41(6): 60-70.
[4] ZHAI Jun-ye,CHENG Xu,SUN Ze-min,LI Chun,LV Bo. Current Advances in Biosynthesis of Acteoside[J]. China Biotechnology, 2021, 41(5): 94-104.
[5] WANG Yi-han,LI Hai-yan,XUE Yong-chang. The Structural Characteristics and Engineering Reconstruction of Flavin-dependent Halogenase[J]. China Biotechnology, 2021, 41(4): 74-80.
[6] WANG Guang-lu, WANG Meng-yuan, ZHOU Yi-fei, MA Ke, ZHANG Fan, YANG Xue-peng. Research Progress in Pyrrologuinoline Quinone Biosynthesis[J]. China Biotechnology, 2021, 41(1): 103-113.
[7] GUO Er-peng, ZHANG Jian-zhi, SI Tong. Recent Advances in the High-throughput Engineering of Lanthipeptides[J]. China Biotechnology, 2021, 41(1): 30-41.
[8] LIU Xiao-chen, FAN Dai-di, YANG Fan, WU Zhan-sheng. Advances in Microbial Production of Ginsenoside and Its Derivatives[J]. China Biotechnology, 2021, 41(1): 80-93.
[9] DUAN Hai-rong,WEI Sai-jin,LI Xun-hang. Advances in Rhamnolipid Biosynthesis by Pseudomonas aeruginosa Research[J]. China Biotechnology, 2020, 40(9): 43-51.
[10] DENG Ting-shan,WU Guo-gan,SUN Yu,TANG Xue-ming. Advances in Biosynthesis of Phenyllactic Acid[J]. China Biotechnology, 2020, 40(9): 62-68.
[11] YAN Wei-huan,HUANG Tong,HONG Jie-fang,MA Yuan-yuan. Recent Advances in Butanol Biosynthesis of Escherichia coli[J]. China Biotechnology, 2020, 40(9): 69-76.
[12] Shuo XU,Wen-yu LU. Progress of Heterologous Biosynthesis of Terpenoids in Engineered Corynebacterium glutamicum[J]. China Biotechnology, 2019, 39(6): 91-96.
[13] Si-li YU,Xue LIU,Zhao-yu ZHANG,Hong-jian YU,Guang-rong ZHAO. Advances of Betalains Biosynthesis and Metabolic Regulation[J]. China Biotechnology, 2018, 38(8): 84-91.
[14] Jia-wei XU,Hua HE,Jing ZHANG,Chu-chao LEI,Hong CHENG,Yong-zhen HUANG. Research Progress on the Structure and Function of Transcription Factor KLF8 Gene[J]. China Biotechnology, 2018, 38(4): 90-95.
[15] ZHANG Ya-guang, ZHANG Chuan-bo, LU Wen-yu. Progress of Biosynthesis of Sophorolipids and Its Derivatives Production in Starmerella bombicola[J]. China Biotechnology, 2017, 37(9): 134-140.