Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (6): 91-96    DOI: 10.13523/j.cb.20190613
    
Progress of Heterologous Biosynthesis of Terpenoids in Engineered Corynebacterium glutamicum
Shuo XU,Wen-yu LU()
Department of Biological Engineering, School of Chemical Engineering and Technology, Tianjin University, Key Laboratory of Systems Bioengineering, Ministry of Education, SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
Download: HTML   PDF(499KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Terpenoids have considerable commercial value, but the production process is complex and the yield is low. It has become a hot spot to synthesize terpenoids from microorganism. Corynebacterium glutamicum contains a pathway to produce carotenoid, which is a natural advantage for the synthesis of terpenoids heterologously. The synthesis of terpenoids from C. glutamicum is summarized, including the terpenoids synthesis pathway in C. glutamicum, key enzymes and global regulatory mechanisms in this pathway. And the advances in this pathway in synthesis of monoterpenes, sesquiterpenes, and tetraterpenes are summarized. The problems and advice efficient synthesis of terpenoids by C. glutamicum is discussed.



Key wordsCorynebacterium glutamicum      Terpenoids      Heterologous biosynthesis     
Received: 02 November 2018      Published: 12 July 2019
ZTFLH:  Q819  
Corresponding Authors: Wen-yu LU     E-mail: wenyulu@tju.edu.cn
Cite this article:

Shuo XU,Wen-yu LU. Progress of Heterologous Biosynthesis of Terpenoids in Engineered Corynebacterium glutamicum. China Biotechnology, 2019, 39(6): 91-96.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20190613     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I6/91

Fig.1 Biosynthesis pathway of terpenoids in Corynebacterium glutamicum
[1]   Kirby J, Keasling J D . Biosynthesis of plant isoprenoids: perspectives for microbial engineering. Annual Review of Plant Biology, 1958,60(1):335-355.
[2]   Chirumbolo S, Bjorklund G . The antinociceptive activity of geraniol. Basic & Clinical Pharmacology & Toxicology, 2017,120(2):105-107.
[3]   Wei H H, Zhang H L , Xing-Tai L I . Research progress in pharmacological activities of ginsenoside Re. Journal of Dalian Minzu University, 2018,48(15):1233-1237.
[4]   Motallebnejad M, Molania T, Moghadamnia A A , et al. Antioxidant effect of lycopene on oral mucositis in gamma radiation protection in rats (A preliminary study). Journal of Mazandaran University of Medical Sciences, 2018,27(159):137-142.
[5]   Rohmer M . The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat Prod Rep, 1999,16(5):565-574.
doi: 10.1039/a709175c
[6]   Rodríguez-Concepción M, Boronat A . Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiology, 2002,130(3):1079-1089.
doi: 10.1104/pp.007138
[7]   陈鹏飞 . 植物中萜类化合物的提取方法研究进展. 中文信息, 2017,20(2):259.
[7]   Chen P F . Progress in extraction of terpenoids from plants. Chinese Information, 2017,20(2):259.
[8]   Lin S C, Chein R J . Total synthesis of the labdane diterpenes galanal A and B from geraniol. Journal of Organic Chemistry, 2017,82(3):1575-1583.
doi: 10.1021/acs.joc.6b02766
[9]   Wu W, Liu F, Davis R W . Engineering Escherichia coli for the production of terpene mixture enriched in caryophyllene and caryophyllene alcohol as potential aviation fuel compounds. Metabolic Engineering Communications, 2018,6:13-21.
doi: 10.1016/j.meteno.2018.01.001
[10]   Lee J Y, Na Y A, Kim E , et al. The actinobacterium Corynebacterium glutamicum, an industrial workhorse. Journal of Microbiology & Biotechnology, 2016,26(5):807.
[11]   Heider S A, Peters-Wendisch P, Beekwilder J , et al. IdsA is the major geranylgeranyl pyrophosphate synthase involved in carotenogenesis in Corynebacterium glutamicum. Febs Journal, 2015,281(21):4906-4920.
[12]   Heider S A E, Petra P W, Wendisch V F . Carotenoid biosynthesis and overproduction in Corynebacterium glutamicum. BMC Microbiology, 2012,12(1):198-198.
doi: 10.1186/1471-2180-12-198
[13]   Heider S A E, Wolf N, Hofemeier A , et al. Optimization of the IPP precursor supply for the production of lycopene, decaprenoxanthin and astaxanthin by Corynebacterium glutamicum. Frontiers in Bioengineering & Biotechnology, 2014,2:28.
[14]   Lee M, Gräwert T, Quitterer F , et al. Biosynthesis of isoprenoids: crystal structure of the [4Fe-4S] cluster protein IspG. Journal of Molecular Biology, 2010,404(4):600-610.
doi: 10.1016/j.jmb.2010.09.050
[15]   Gräwert T, Kaiser J, Zepeck F , et al. IspH protein of Escherichia coli: studies on iron-sulfur cluster implementation and catalysis. Journal of the American Chemical Society, 2004,126(40):12847-12855.
doi: 10.1021/ja0471727
[16]   Xiao Y, Zhao Z K, Liu P . Mechanistic studies of IspH in the deoxyxylulose phosphate pathway: heterolytic C-O bond cleavage at C4 position. Journal of the American Chemical Society, 2008,130(7):2164-2165.
doi: 10.1021/ja710245d
[17]   Tripathi L, Zhang Y, Lin Z . Bacterial Sigma factors as targets for engineered or synthetic transcriptional control. Frontiers in Bioengineering & Biotechnology, 2014,2:33.
[18]   Taniguchi H, Henke N A , Heider S A E , et al. Overexpression of the primary sigma factor gene sigA, improved carotenoid production by Corynebacterium glutamicum: Application to production of β-carotene and the non-native linear C50 carotenoid bisanhydrobacterioruberin. Metabolic Engineering Communications, 2017,4:1-11.
doi: 10.1016/j.meteno.2017.01.001
[19]   Vranová E, Coman D, Gruissem W . Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annual Review of Plant Biology, 2013,64(1):665.
doi: 10.1146/annurev-arplant-050312-120116
[20]   Krubasik P, Kobayashi M, Sandmann G . Expression and functional analysis of a gene cluster involved in the synthesis of decaprenoxanthin reveals the mechanisms for C50 carotenoid formation. Febs Journal, 2010,268(13):3702-3708.
[21]   Henke N A, Sae H, Hannibal S , et al. Isoprenoid pyrophosphate-dependent transcriptional regulation of carotenogenesis in Corynebacterium glutamicum. Frontiers in Microbiology, 2017,8:633.
doi: 10.3389/fmicb.2017.00633
[22]   Brennan T C, Turner C D, Krömer J O , et al. Alleviating monoterpene toxicity using a two-phase extractive fermentation for the bioproduction of jet fuel mixtures in Saccharomyces cerevisiae. Biotechnology & Bioengineering, 2012,109(10):2513-2522.
[23]   Kang M K, Eom J H, Kim Y , et al. Biosynthesis of pinene from glucose using metabolically-engineered Corynebacterium glutamicum. Biotechnology Letters, 2014,36(10):2069-2077.
doi: 10.1007/s10529-014-1578-2
[24]   Girhard M, Machida K, Itoh M , et al. Regioselective biooxidation of (+)-valencene by recombinant E. coli, expressing CYP109B1 from Bacillus subtilis, in a two-liquid-phase system. Microbial Cell Factories, 2009,8(1):36.
doi: 10.1186/1475-2859-8-36
[25]   Frohwitter J , Heider S A E, Peters-Wendisch P , et al. Production of the sesquiterpene (+)-valencene by metabolically engineered Corynebacterium glutamicum. Journal of Biotechnology, 2014,191:205-213.
doi: 10.1016/j.jbiotec.2014.05.032
[26]   Heider S A, Peterswendisch P, Wendisch V F , et al. Metabolic engineering for the microbial production of carotenoids and related products with a focus on the rare C50 carotenoids. Applied Microbiology & Biotechnology, 2014,98(10):4355-4368.
[27]   Clinton S K . Lycopene: chemistry, biology, and implications for human health and disease. Nutrition Reviews, 2010,56(2):35-51.
[28]   Matano C, Uhde A, Youn J W , et al. Engineering of Corynebacterium glutamicum, for growth and l -lysine and lycopene production from N -acetyl-glucosamine. Appl Microbiol Biotechnol, 2014,98(12):5633-5643.
doi: 10.1007/s00253-014-5676-9
[29]   Hadiati A, Krahn I, Lindner S N , et al. Engineering of Corynebacterium glutamicum, for growth and production of L-ornithine, L-lysine, and lycopene from hexuronic acids. Bioresources & Bioprocessing, 2014,1(1):25.
[30]   Grimmig B, Kim S H, Nash K , et al. Neuroprotective mechanisms of astaxanthin: a potential therapeutic role in preserving cognitive function in age and neurodegeneration. Geroscience, 2017,39(1):1-14.
doi: 10.1007/s11357-016-9954-6
[31]   Henke N A , Heider S A E, Peters-Wendisch P , et al. Production of the marine carotenoid astaxanthin by metabolically engineered Corynebacterium glutamicum. Marine Drugs, 2016,14(7):124.
doi: 10.3390/md14070124
[32]   Wandrey G, Bier C, Binder D , et al. Light-induced gene expression with photocaged IPTG for induction profiling in a high-throughput screening system. Microbial Cell Factories, 2016,15(1):63.
doi: 10.1186/s12934-016-0461-3
[33]   Binder D, Frohwitter J, Mahr R , et al. Light-controlled cell factories: employing photocaged isopropyl-β-d-thiogalactopyranoside for light-mediated optimization of lac promoter-based gene expression and (+)-valencene biosynthesis in Corynebacterium glutamicum. Appl Environ Microbiol, 2016,82(20):6141-6149.
doi: 10.1128/AEM.01457-16
[34]   Kim S K, Han G H, Seong W , et al. CRISPR interference-guided balancing of a biosynthetic mevalonate pathway increases terpenoid production. Metabolic Engineering, 2016,38:228-240.
doi: 10.1016/j.ymben.2016.08.006
[35]   Yu J, Qian F, Yang J , et al. CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum. Nature Communications, 2017,8:15179.
[36]   Jiang G Z, Yao M D, Ying W , et al. Manipulation of GES and ERG20 for geraniol overproduction in Saccharomyces cerevisiae. Metabolic Engineering, 2017,41:57-66.
doi: 10.1016/j.ymben.2017.03.005
[37]   Liu H, Zhang W, Gong G , et al. Biosynthesis of squalene by introducing hybrid MVA pathway in Escherichia coli. Chinese Journal of Pharmaceuticals, 2017,48(1):982-990.
[38]   Ohto C, Muramatsu M, Obata S , et al. Overexpression of the gene encoding HMG-CoA reductase in Saccharomyces cerevisiae, for production of prenyl alcohols. Applied Microbiology & Biotechnology, 2009,82(5):837.
[39]   Kirby J, Nishimoto M, Park J G , et al. Cloning of casbene and neocembrene synthases from Euphorbiaceae plants and expression in Saccharomyces cerevisiae. Phytochemistry, 2010,71(13):1466-1473.
doi: 10.1016/j.phytochem.2010.06.001
[40]   Reuse S, Calao M, Kabeya K , et al. Synergistic activation of HIV-1 expression by deacetylase inhibitors and prostratin: implications for treatment of latent infection. PLoS One, 2009,4(6):e6093.
doi: 10.1371/journal.pone.0006093
[1] ZHANG Yu-ting,LI Wei-guo,LIANG Dong-mei,QIAO Jian-jun,CAI YIN Qing-ge-le. Research Progress in Synthetic Biology of P450s in Terpenoid Synthesis[J]. China Biotechnology, 2020, 40(8): 84-96.
[2] ZHANG Zhong-su, YANG Rui-gang, ZHU Ling-yun, WU Xiao-min. Strategies for Improving The Yield of Microbial Terpenoids Production[J]. China Biotechnology, 2017, 37(1): 97-103.
[3] ZHANG Qiang, LI Da shuai, LU Wen yu. Progress and Prospect of Heterologous Biosynthesis of Ttriterpenoids in Engineered Escherichia coli[J]. China Biotechnology, 2016, 36(11): 83-89.
[4] . Gentic Manipulation on Biosynthesis of Terpenoids[J]. China Biotechnology, 2006, 26(01): 60-64.