Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (5): 94-104    DOI: 10.13523/j.cb.2102012
    
Current Advances in Biosynthesis of Acteoside
ZHAI Jun-ye1,CHENG Xu1,SUN Ze-min2,LI Chun3,LV Bo1,*()
1 School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
2 School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China
3 Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
Download: HTML   PDF(1635KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Acteoside is a natural product widely found in many plants, which is composed of caffeic acid, hydroxytyrosol, glucose and rhamnose, including anti-inflammatory, antibacterial, antiviral, anti-tumor, antioxidant, analgesic, neuroprotective, improving sexual function, immunomodulatory, and memory protective activities. However, traditional extraction of acteoside and its derivatives from plants have some problems such as low content, low extraction efficiency and environmental pollution.In recent years, the study of heterologous synthesis of plant natural products has been successfully constructed by the rapid development of synthetic biology, which provides a new idea for the efficient production of acteoside. The recent advances of acteoside cell factory which includes the key metabolic biosynthesis elucidations of phenylethanoid glycoside , mining and optimization of key gene components, synthesis of key precursors were summarized.



Key wordsPhenylethanoid glycoside      Acteoside      Pathway analysis      Biosynthesis     
Received: 08 February 2021      Published: 01 June 2021
ZTFLH:  Q815  
Corresponding Authors: Bo LV     E-mail: lv-b@bit.edu.cn
Cite this article:

ZHAI Jun-ye,CHENG Xu,SUN Ze-min,LI Chun,LV Bo. Current Advances in Biosynthesis of Acteoside. China Biotechnology, 2021, 41(5): 94-104.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2102012     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I5/94

Fig.1 The structure and content distribution of acteoside (a) Phenylethanoid glycosides and its derivatives (b) Content distribution of acteoside in different varieties (c) Common substituents of phenylethanoid glycosides
Fig.2 The biosynthetic pathways of of acteoside (a)Phenylalanine metabolic pathway (b) Dopamine pathway/Tyramine pathway and enzymatic crossover pathway (c) Acyltransferase and glycosyltransferase catalytic pathway.PAL: Phenyl ammonia lyase; C4H: Cinnamate 4-hydroxylase; C3H: Coumarate 3-hydroxylase; 4CL: 4-coumarate coenzyme ligase; TyDC: Tyrosine decarboxylase; ALDH: Alcohol dehydrogenase or arylalchohol dehydrogenase; 4HPAR: 4-hydroxyphenylpyruvate reductase; 4HPAAS: 4-hydroxyphenylacetaldehyde synthase; DHPAAS: 3,4-dihydroxyphenylacetaldehyde synthase; MAO: Monoamine oxidase; TYO: Tyramine oxidase; CuAO: Copper amine oxidase; PPO: Polyphenol oxidase; TLH: Tyramine/tyrosol hydroxylase; TH: Tyrosine hydroxylase or tyrosine-3-monooxygenase; DODC/DDC: Amino acid decarboxylase or dopa decarboxylase; TAL: Tyrosine ammonia lyase; TAT: Tyrosine aminotransferase; HPPADC: 4-hydroxyphenylpyruvate decarboxylase; 4HPAAS: 4-hydroxyphenylacetaldehyde synthase; HCT: Quinine hydroxycinnamyl transferase; UGT: UDP-glucose glucosyltransferase;URT: UDP-rhamnose glucosyltransferase
物种 NCBI Accession
沙漠肉苁蓉Cistanche
deserticola[32]
SRR1779481、SRR1779494 PAL、4CL、HCT、CSE、CYP73A、CYP98A3
熟地黄Rehmannia
glutinosa Hairy Roots[17]
SRR5438036、SRR5438037、SRR5438042 PAL、C4H、C3H、4CL、TyDC、PPO、CuAO、HCT、ALDH、UGT
熟地黄Rehmannia
glutinosa Tuberous
Root[16]
SRR8196590、SRR8196591、SRR8196592、SRR8196593、SRR8196594、SRR8196595、SRR8196596、SRR8196597、SRR8196598、SRR8196599、SRR8196600、SRR8196601、SRR8196602、SRR8196603、SRR8196604、SRR8196605、SRR8196606、SRR8196607、SRR8196608、SRR8196609、SRR8196610、SRR8196611、SRR8196612、SRR8196613 PAL、C4H、C3H、4CL、PPO、DODC、CuAO、UGT、ALDH、HCT
Centranthera grandiflora[18] SRR9903027、SRR9903028、SRR9903029、SRR9903030、SRR9903031、SRR9903032、SRR9903033、SRR9903034、SRR9903035 PAL、C4H、C3H、CuAO、ALDH、4CL、UGT、TyDC、PPO、HCT
橄榄Olea europaea L.[24] SRR8606699、SRR8606701、SRR8446454、SRR8446455、SRR8446452、SRR8446453、SRR8446451 PAR、DODC、ALDH、PPO、CuAO
Table 1 Data on the transcriptome of the phenylethanoid glycosides
[1]   Tian X Y, Li M X, Lin T, et al. A review on the structure and pharmacological activity of phenylethanoid glycosides. European Journal of Medicinal Chemistry, 2021,209:112563.
doi: 10.1016/j.ejmech.2020.112563
[2]   薛景, 王英爱, 贾献慧, 等. 苯乙醇苷类化合物的分类及研究进展. 药学研究, 2018,37(5):282-290.
[2]   Xue J, Wang Y A, Jia X H, et al. Research progress of phenylethanoid glycosides. Journal of Pharmaceutical Research, 2018,37(5):282-290.
[3]   王向楠. 基于转录组测序的地黄毛蕊花糖苷生物合成相关酶基因的发掘与鉴定. 新乡: 河南师范大学, 2017.
[3]   Wang X N. Mining and identification of verbascoside biosynthesis associated genes based on transcriptome sequencing of Rehmannia glutinosa. Xinxiang: Henan Normal University, 2017.
[4]   于文娜, 张振凌, 李柯柯, 等. 鲜地黄花不同部位环烯醚萜苷类成分含量测定. 食品研究与开发, 2017,38(14):134-137.
[4]   Yu W N, Zhang Z L, Li K K, et al. Determination of the content of iridoid glycosidein from different parts of the fresh rehmanniae flowers. Food Research and Development, 2017,38(14):134-137.
[5]   曹馨元, 曹文龙, 陶锐, 等. HPLC法测定不同产地马先蒿属植物中的毛蕊花苷. 中成药, 2016,38(1):126-129.
[5]   Cao X Y, Cao W L, Tao R, et al. Determination of verbascoside in plants of Pedicularis L. from different growing areas by HPLC. Chinese Traditional Patent Medicine, 2016,38(1):126-129.
[6]   王谨涵, 李茂星, 曹馨元, 等. HPLC法同时测定马先蒿属6种植物中毛蕊花糖苷及桃叶珊瑚苷含量. 解放军药学学报, 2015,31(6):542-544.
[6]   Wang J H, Li M X, Cao X Y, et al. Simultaneous determination of verbascoside and aucubin in 6 medicinal plants of Pedicularis by HPLC. Pharmaceutical Journal of Chinese PLA, 2015,31(6):542-544.
[7]   许兵兵, 黄碧涛, 曾金祥, 等. 车前子及车前草中毛蕊花糖苷与异毛蕊花糖苷的含量比较. 中国实验方剂学杂志, 2016,22(18):64-67.
[7]   Xu B B, Huang B T, Zeng J X, et al. Comparison of contents of verbascoside and isoverbascoside in plantaginis semen and plantaginis herba. Chinese Journal of Experimental Traditional Medical Formulae, 2016,22(18):64-67.
[8]   易满, 封传华, 汤小林, 等. 不同产地车前草中总苯乙醇苷和毛蕊花糖苷含量测定. 中国中医药信息杂志, 2017,24(9):84-86.
[8]   Yi M, Feng C H, Tang X L, et al. Content determination of phenylethanoid glycosides and acteoside in Plantago herba from different producing areas. Chinese Journal of Information on Traditional Chinese Medicine, 2017,24(9):84-86.
[9]   马志国, 甘稳城. RP-HPLC同时测定沙苁蓉中3种苯乙醇苷的含量. 药物分析杂志, 2011,31(6):1084-1087.
[9]   Ma Z G, Gan W C. RP-HPLC simultaneous determination of three phenylethanoid glycosides in Cistanche sinensis G.Beck. Chinese Journal of Pharmaceutical Analysis, 2011,31(6):1084-1087.
[10]   李彩峰, 温爱平, 王晓琴, 等. HPLC同时测定黄花列当中3个苯乙醇苷的含量. 药物分析杂志, 2016,36(2):291-295.
[10]   Li C F, Wen A P, Wang X Q, et al. HPLC simultaneous determination of three phenylethanoid glycosides in Orobanche pycnostachya. Chinese Journal of Pharmaceutical Analysis, 2016,36(2):291-295.
[11]   李秀敏, 王勇, 张俊清, 等. HPLC法同时测定裸花紫珠中3种苯乙醇苷类成分的含量. 广州化工, 2019,47(11):104-106.
[11]   Li X M, Wang Y, Zhang J Q, et al. Simultaneous determination of three kinds of phenylethanoid glycosides in Callicarpa nudiflora by HPLC method. Guangzhou Chemical Industry, 2019,47(11):104-106.
[12]   蔡灏, 孙秀漫, 欧阳彩君, 等. HPLC测定不同产地广东紫珠中3种苯乙醇苷的含量. 中国实验方剂学杂志, 2013,19(10):63-65.
[12]   Cai H, Sun X M, Ouyang C J, et al. Content determination of three kinds of benzene glycosides in different parts of Callicarpa kwangtungensis from different areas by HPLC. Chinese Journal of Experimental Traditional Medical Formulae, 2013,19(10):63-65.
[13]   陈朋, 谢锐星, 邱志敬. 40种苦苣苔科植物毛蕊花糖苷与总黄酮含量的测定. 贵州农业科学, 2016,44(8):94-96.
[13]   Chen P, Xie R X, Qiu Z J. Measurement of acteoside and total flavonoids contents in 40 kinds of Gesneriaceae plants. Guizhou Agricultural Sciences, 2016,44(8):94-96.
[14]   Duynstee H I, de Koning M C, Ovaa H, et al. Synthesis of verbascoside: a dihydroxyphenylethyl glycoside with diverse bioactivity. European Journal of Organic Chemistry, 1999,1999(10):2623-2632.
doi: 10.1002/(ISSN)1099-0690
[15]   de Davy A M, Kildegaard H F, Andersen M R. Cell factory engineering. Cell Systems, 2017,4(3):262-275.
doi: 10.1016/j.cels.2017.02.010
[16]   Zhi J Y, Li Y J, Zhang Z Y, et al. Molecular regulation of catalpol and acteoside accumulation in radial striation and non-radial striation of Rehmannia glutinosa tuberous root. International Journal of Molecular Sciences, 2018,19(12):3751.
doi: 10.3390/ijms19123751
[17]   Wang F Q, Zhi J Y, Zhang Z Y, et al. Transcriptome analysis of salicylic acid treatment in Rehmannia glutinosa hairy roots using RNA-seq technique for identification of genes involved in acteoside biosynthesis. Frontiers in Plant Science, 2017,8:787.
doi: 10.3389/fpls.2017.00787
[18]   Zhang, Li, Wang, et al. Analysis of Centranthera grandiflora Benth transcriptome explores genes of catalpol, acteoside and azafrin biosynthesis. International Journal of Molecular Sciences, 2019,20(23):6034.
doi: 10.3390/ijms20236034
[19]   Su D, Li W, Xu Q M, et al. New metabolites of acteoside identified by ultra-performance liquid chromatography/quadrupole-time-of-flight MSE in rat plasma, urine, and feces. Fitoterapia, 2016,112:45-55.
doi: 10.1016/j.fitote.2016.05.004
[20]   Cui Q L, Pan Y N, Xu X T, et al. The metabolic profile of acteoside produced by human or rat intestinal bacteria or intestinal enzyme in vitro employed UPLC-Q-TOF-MS. Fitoterapia, 2016,109:67-74.
doi: 10.1016/j.fitote.2015.12.011
[21]   Zhou F, Zhao Y J, Li M Q, et al. Degradation of phenylethanoid glycosides in Osmanthus fragrans Lour. flowers and its effect on anti-hypoxia activity. Scientific Reports, 2017,7:10068.
doi: 10.1038/s41598-017-10411-0 pmid: 28855701
[22]   Cui Q L, Pan Y N, Zhang W, et al. Metabolites of dietary acteoside: profiles, isolation, identification, and hepatoprotective capacities. Journal of Agricultural and Food Chemistry, 2018,66(11):2660-2668.
doi: 10.1021/acs.jafc.7b04650
[23]   Berner M, Krug D, Bihlmaier C, et al. Genes and enzymes involved in caffeic acid biosynthesis in the actinomycete Saccharothrix espanaensis. Journal of Bacteriology, 2006,188(7):2666-2673.
doi: 10.1128/JB.188.7.2666-2673.2006
[24]   Rao G D, Zhang J G, Liu X X, et al. Identification of putative genes for polyphenol biosynthesis in olive fruits and leaves using full-length transcriptome sequencing. Food Chemistry, 2019,300:125246.
doi: 10.1016/j.foodchem.2019.125246
[25]   Satoh Y, Tajima K, Munekata M, et al. Engineering of l-tyrosine oxidation in Escherichia coli and microbial production of hydroxytyrosol. Metabolic Engineering, 2012,14(6):603-610.
doi: 10.1016/j.ymben.2012.08.002
[26]   Vavricka C J, Yoshida T, Kuriya Y, et al. Mechanism-based tuning of insect 3, 4-dihydroxyphenylacetaldehyde synthase for synthetic bioproduction of benzylisoquinoline alkaloids. Nature Communications, 2019,10:2015.
doi: 10.1038/s41467-019-09610-2
[27]   Chung D, Kim S Y, Ahn J H. Production of three phenylethanoids, tyrosol, hydroxytyrosol, and salidroside, using plant genes expressing in Escherichia coli. Scientific Reports, 2017,7:2578.
doi: 10.1038/s41598-017-02042-2
[28]   Chen W, Yao J, Meng J, et al. Promiscuous enzymatic activity-aided multiple-pathway network design for metabolic flux rearrangement in hydroxytyrosol biosynthesis. Nature Communications, 2019,10:960.
doi: 10.1038/s41467-019-08781-2 pmid: 30814511
[29]   Fatemi F, Abdollahi M R, Mirzaie-Asl A, et al. Identification and expression profiling of rosmarinic acid biosynthetic genes from Satureja khuzistanica under carbon nanotubes and methyl jasmonate elicitation. Plant Cell, Tissue and Organ Culture (PCTOC), 2019,136(3):561-573.
doi: 10.1007/s11240-018-01537-8
[30]   Jiang J J, Yin H, Wang S, et al. Metabolic engineering of Saccharomyces cerevisiae for high-level production of salidroside from glucose. Journal of Agricultural and Food Chemistry, 2018,66(17):4431-4438.
doi: 10.1021/acs.jafc.8b01272
[31]   Torrens-Spence M P, Pluskal T, Li F S, et al. Complete pathway elucidation and heterologous reconstitution of rhodiola salidroside biosynthesis. Molecular Plant, 2018,11(1):205-217.
doi: S1674-2052(17)30377-5 pmid: 29277428
[32]   Li Y L, Wang X L, Chen T T, et al. RNA-seq based de novo transcriptome assembly and gene discovery of Cistanche deserticola fleshy stem. PLoS One, 2015,10(5):e0125722. DOI: 10.1371/journal.pone.0125722.
doi: 10.1371/journal.pone.0125722
[33]   Sun X, Li L, Pei J, et al. Metabolome and transcriptome profiling reveals quality variation and underlying regulation of three ecotypes for Cistanche deserticola. Plant Molecular Biology, 2020,102(3):253-269.
doi: 10.1007/s11103-019-00944-5
[34]   Zhou Y Q, Wang X N, Wang W S, et al. De novo transcriptome sequencing-based discovery and expression analyses of verbascoside biosynthesis-associated genes in Rehmannia glutinosa tuberous roots. Molecular Breeding, 2016,36(10):1-11.
doi: 10.1007/s11032-015-0425-z
[35]   罗海羽. 诱导子在植物细胞培养中的研究进展. 北京农业, 2011,(36):15-16.
[35]   Luo H Y. Elicitor in plant cell culture research. Beijing Agriculture, 2011,(36):15-16.
[36]   Chen H C, Li Q Z, Shuford C M, et al. Membrane protein complexes catalyze both 4- and 3-hydroxylation of cinnamic acid derivatives in monolignol biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2011,108(52):21253-21258.
[37]   Furuya T, Arai Y, Kino K. Biotechnological production of caffeic acid by bacterial cytochrome P450 CYP199A2. Applied and Environmental Microbiology, 2012,78(17):6087-6094.
doi: 10.1128/AEM.01103-12
[38]   Lin Y H, Yan Y J. Biosynthesis of caffeic acid in Escherichia coli using its endogenous hydroxylase complex. Microbial Cell Factories, 2012,11:42.
doi: 10.1186/1475-2859-11-42
[39]   秦小淯, 乔建军, 李艳妮. 羟基肉桂酰基转移酶的结构、功能与应用. 中国生物化学与分子生物学报, 2019,35(10):1058-1066.
[39]   Qin X Y, Qiao J J, Li Y N. Structure, function and application of hydroxycinnamoyl transferase. Chinese Journal of Biochemistry and Molecular Biology, 2019,35(10):1058-1066.
[40]   Cha M N, Kim H J, Kim B G, et al. Synthesis of chlorogenic acid and p-coumaroyl shikimates from glucose using engineered Escherichia coli. Journal of Microbiology and Biotechnology, 2014,24(8):1109-1117.
pmid: 24786529
[41]   Li T Z, Zhou W, Bi H P, et al. Production of caffeoylmalic acid from glucose in engineered Escherichia coli. Biotechnology Letters, 2018,40(7):1057-1065.
doi: 10.1007/s10529-018-2580-x
[42]   Chiang Y C, Levsh O, Lam C K, et al. Structural and dynamic basis of substrate permissiveness in hydroxycinnamoyltransferase (HCT). PLoS Computational Biology, 2018,14(10):e1006511.
doi: 10.1371/journal.pcbi.1006511
[43]   Bai Y F, Bi H P, Zhuang Y B, et al. Production of salidroside in metabolically engineered Escherichia coli. Scientific Reports, 2014,4:6640.
doi: 10.1038/srep06640
[44]   Fan B, Chen T Y, Zhang S, et al. Mining of efficient microbial UDP-glycosyltransferases by motif evolution cross plant kingdom for application in biosynthesis of salidroside. Scientific Reports, 2017,7:463.
doi: 10.1038/s41598-017-00568-z pmid: 28352078
[45]   Choo H J, Kim E J, Kim S Y, et al. Microbial synthesis of hydroxytyrosol and hydroxysalidroside. Applied Biological Chemistry, 2018,61(3):295-301.
doi: 10.1007/s13765-018-0360-x
[46]   谢峻, 刘燕, 柯江英, 等. 苯乙醇苷合成的研究进展. 中草药, 2019,50(20):5109-5116.
[46]   Xie J, Liu Y, Ke J Y, et al. Advances in biosynthesis and chemical synthesis of phenylethanoid glycosides. Chinese Traditional and Herbal Drugs, 2019,50(20):5109-5116.
[47]   Hernández-Chávez G, Martinez A, Gosset G. Metabolic engineering strategies for caffeic acid production in Escherichia coli. Electronic Journal of Biotechnology, 2019,38:19-26.
doi: 10.1016/j.ejbt.2018.12.004
[48]   Furuya T, Kino K. Catalytic activity of the two-component flavin-dependent monooxygenase from Pseudomonas aeruginosa toward cinnamic acid derivatives. Applied Microbiology and Biotechnology, 2014,98(3):1145-1154.
doi: 10.1007/s00253-013-4958-y
[49]   Liu L Q, Liu H, Zhang W, et al. Engineering the biosynthesis of caffeic acid in Saccharomyces cerevisiae with heterologous enzyme combinations. Engineering, 2019,5(2):287-295.
doi: 10.1016/j.eng.2018.11.029
[50]   Li Y Z, Mao J W, Liu Q L, et al. De novo biosynthesis of caffeic acid from glucose by engineered Saccharomyces cerevisiae. ACS Synthetic Biology, 2020,9(4):756-765.
doi: 10.1021/acssynbio.9b00431
[51]   Li X L, Chen Z Y, Wu Y F, et al. Establishing an artificial pathway for efficient biosynthesis of hydroxytyrosol. ACS Synthetic Biology, 2018,7(2):647-654.
doi: 10.1021/acssynbio.7b00385
[52]   Yao J, He Y, Su N N, et al. Developing a highly efficient hydroxytyrosol whole-cell catalyst by de-bottlenecking rate-limiting steps. Nature Communications, 2020,11:1515.
doi: 10.1038/s41467-020-14918-5
[53]   Li C Z, Jia P, Bai Y J, et al. Efficient synthesis of hydroxytyrosol from l-3, 4-dihydroxyphenylalanine using engineered Escherichia coli whole cells. Journal of Agricultural and Food Chemistry, 2019,67(24):6867-6873.
doi: 10.1021/acs.jafc.9b01856
[54]   Xue Y X, Chen X Z, Yang C, et al. Engineering Eschericha coli for enhanced tyrosol production. Journal of Agricultural and Food Chemistry, 2017,65(23):4708-4714.
doi: 10.1021/acs.jafc.7b01369
[55]   Liu X, Li X B, Jiang J L, et al. Convergent engineering of syntrophic Escherichia coli coculture for efficient production of glycosides. Metabolic Engineering, 2018,47:243-253.
doi: 10.1016/j.ymben.2018.03.016
[56]   Guo W, Huang Q L, Feng Y H, et al. Rewiring central carbon metabolism for tyrosol and salidroside production in Saccharomyces cerevisiae. Biotechnology and Bioengineering, 2020,117(8):2410-2419.
doi: 10.1002/bit.v117.8
[57]   Liu H Y, Tian Y J, Zhou Y, et al. Multi-modular engineering of Saccharomyces cerevisiae for high-titre production of tyrosol and salidroside. Microbial Biotechnology.[2021-04-11]. https://doi.org/10.1111/1751-7915.13667.
[1] ZHANG Heng,LIU Hui-yan,PAN Lin,WANG Hong-yan,LI Xiao-fang,WANG Tong,FANG Hai-tian. Research Strategy for Biosynthesis of Gamma Aminobutyric Acid[J]. China Biotechnology, 2021, 41(8): 110-119.
[2] LI Bing,ZHANG Chuan-bo,SONG Kai,LU Wen-yu. Research Progress in Biosynthesis of Rare Ginsenosides[J]. China Biotechnology, 2021, 41(6): 71-88.
[3] MIAO Yi-nan,LI Jing-zhi,WANG Shuai,LI Chun,WANG Ying. Research Progress of Key Enzymes in Terpene Biosynthesis[J]. China Biotechnology, 2021, 41(6): 60-70.
[4] GUO Er-peng, ZHANG Jian-zhi, SI Tong. Recent Advances in the High-throughput Engineering of Lanthipeptides[J]. China Biotechnology, 2021, 41(1): 30-41.
[5] LIU Xiao-chen, FAN Dai-di, YANG Fan, WU Zhan-sheng. Advances in Microbial Production of Ginsenoside and Its Derivatives[J]. China Biotechnology, 2021, 41(1): 80-93.
[6] WANG Guang-lu, WANG Meng-yuan, ZHOU Yi-fei, MA Ke, ZHANG Fan, YANG Xue-peng. Research Progress in Pyrrologuinoline Quinone Biosynthesis[J]. China Biotechnology, 2021, 41(1): 103-113.
[7] DUAN Hai-rong,WEI Sai-jin,LI Xun-hang. Advances in Rhamnolipid Biosynthesis by Pseudomonas aeruginosa Research[J]. China Biotechnology, 2020, 40(9): 43-51.
[8] DENG Ting-shan,WU Guo-gan,SUN Yu,TANG Xue-ming. Advances in Biosynthesis of Phenyllactic Acid[J]. China Biotechnology, 2020, 40(9): 62-68.
[9] YAN Wei-huan,HUANG Tong,HONG Jie-fang,MA Yuan-yuan. Recent Advances in Butanol Biosynthesis of Escherichia coli[J]. China Biotechnology, 2020, 40(9): 69-76.
[10] Meng-ying OU,Xiao-zheng WANG,Shuang-jun LIN,Tong-wei GUAN,Yi-jin LIN. A Review of Studies on Streptonigrin[J]. China Biotechnology, 2019, 39(7): 100-107.
[11] Shuo XU,Wen-yu LU. Progress of Heterologous Biosynthesis of Terpenoids in Engineered Corynebacterium glutamicum[J]. China Biotechnology, 2019, 39(6): 91-96.
[12] Si-li YU,Xue LIU,Zhao-yu ZHANG,Hong-jian YU,Guang-rong ZHAO. Advances of Betalains Biosynthesis and Metabolic Regulation[J]. China Biotechnology, 2018, 38(8): 84-91.
[13] ZHANG Ya-guang, ZHANG Chuan-bo, LU Wen-yu. Progress of Biosynthesis of Sophorolipids and Its Derivatives Production in Starmerella bombicola[J]. China Biotechnology, 2017, 37(9): 134-140.
[14] GAO Hong-jiang, LI Sheng-yan, WANG Hai, LIN Feng, ZHANG Chun-yu, LANG Zhi-hong. Progress on Function and Biosynthesis of Benzoxazinoids[J]. China Biotechnology, 2017, 37(8): 104-109.
[15] ZHENG Tian-xiang, QIAN Yu-nong, ZHANG Da-yu. Key Genes Involved in Fatty Acids Biosynthesis in Insects[J]. China Biotechnology, 2017, 37(11): 19-27.