Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2017, Vol. 37 Issue (8): 104-109    DOI: 10.13523/j.cb.20170815
    
Progress on Function and Biosynthesis of Benzoxazinoids
GAO Hong-jiang1,2, LI Sheng-yan2, WANG Hai2, LIN Feng1, ZHANG Chun-yu1, LANG Zhi-hong2
1. Biological Science and Technology College, Shenyang Agricultural University, Shenyang 110866, China;
2. Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Download: HTML   PDF(582KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  Benzoxazinoids(BXs) are important secondary metabolites in plants.There has been a wide range of attention and research of them because of their role in defensive and allelopathy.With the development of genomics and molecular biology, the BXs biosynthesis and other molecular areas research has made great progress.The BXs profile, the function of BXs, the genetic basis of BXs biosynthesis and expression regulation were briefly introduced.

Key wordsBenzoxazinoids      Disease resistance      Insect resistance      Biosynthesis     
Received: 01 March 2017      Published: 25 August 2017
ZTFLH:  Q819  
Cite this article:

GAO Hong-jiang, LI Sheng-yan, WANG Hai, LIN Feng, ZHANG Chun-yu, LANG Zhi-hong. Progress on Function and Biosynthesis of Benzoxazinoids. China Biotechnology, 2017, 37(8): 104-109.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20170815     OR     https://manu60.magtech.com.cn/biotech/Y2017/V37/I8/104

[1] Makowska B, Bakera B, Rakoczy-Trojanowska M. The genetic background of benzoxazinoid biosynthesis in cereals. Acta Physiologiae Plantarum, 2015, 37(9):1-12.
[2] Virtanen A I, Hietala P K, Lundén R, et al. 2(3)-Benzoxazolinone, an anti-fusarium factor in rye seedlings. Acta Chemica Scandinavica, 1955, 9(9):1543-1544.
[3] Wahlroos Ö, Virtanen A I, Hammarsten E, et al. Precursors of 6-methoxybenzoxazolinone in maize and wheat plants, their isolation and some of their properties. Acta Chemica Scandinavica, 1959, 13(9):1906-1908.
[4] Niemeyer H M. Hydroxamic acids derived from 2-hydroxy-2H-1,4-benzoxazin-3(4H)-one:key defense chemicals of cereals. Journal of Agricultural & Food Chemistry, 2009, 57(5):1677.
[5] Hanhineva K, Rogachev I, Aura A M, et al. Qualitative characterization of benzoxazinoid derivatives in whole grain rye and wheat by LC-MS metabolite profiling. Journal of Agricultural & Food Chemistry, 2011, 59(3):921-927.
[6] Shudo K, Ishizaki T, Hashimoto Y, et al. Reaction of 4Acetoxy1,4-benzoxazin-3-one with amino acid derivatives. Heterocycles, 1983, 20(8):1481-1485.
[7] Klun J A, Tipton C L, Brindley T A. 2,4-Dihydroxy-7-methoxy-I,4-benzoxazin-3-one (DIMBOA), an active agent in the resistance of maize to the european corn borer1, 2,3. Journal of Economic Entomology, 1967, 60(6):1529-1533.
[8] Manuwoto S, Scriber J M. Neonate larval survival of European corn borers, Ostrinia nubilalis, on high and low dimboa genotypes of maize:Effects of light intensity and degree of insect in-breeding. Agriculture Ecosystems & Environment, 1985, 14(3-4):221-236.
[9] Betsiashvili M, Ahern K R, Jander G. Additive effects of two quantitative trait loci that confer Rhopalosiphum maidis (corn leaf aphid) resistance in maize inbred line Mo17. Journal of Ex-perimental Botany, 2014, 66(2):571-578.
[10] Sasai H, Ishida M, Murakami K, et al. Species-specific glucosylation of DIMBOA in larvae of the rice armyworm. Bioscience Biotechnology & Biochemistry, 2009, 73(6):1333.
[11] Gianoli E, Niemeyer H M. DIBOA in wild poaceae:sources of resistance to the Russian wheat aphid (Diuraphis noxia) and the greenbug (Schizaphis graminum). Euphytica, 1998, 102(3):317-321.
[12] Tzin V, Lindsay P L, Christensen S A, et al. Genetic mapping shows intraspecific variation and transgressive segregation for caterpillar-induced aphid resistance in maize. Molecular Ecology, 2015, 24(22):5739-5750.
[13] 刘小红, 李健强, 周立刚,等. 丁布对小麦赤霉病菌和玉米小斑病菌的抑制作用. 菌物学报, 2004, 23(1):109-114. Liu X H, Li J Q, Zhou L G, et al. Inhibition effect of DIMBOA on Fusarium graminearum and Bipolaris maydis. Mycosystema, 2004, 23(1):109-114.
[14] 徐国锋, 郑永权, 纪明山. 丁布对小麦条锈病菌的抑制作用. 中国农学通报, 2006, 22(6):324-326. Xu G F, Zheng Y Q, Ji M S. Activity test on DIMBOA against Puccinia striiformis f·sp·tritic.Chinese Agricultural Science Bulletin, 2006, 22(6):324-326.
[15] Ahmad S, Veyrat N, Gordonweeks R, et al. Benzoxazinoid metabolites regulate innate immunity against aphids and fungi in maize. Plant Physiology, 2011, 157(1):317-327.
[16] Guo B, Zhang Y, Li S, et al. Extract from maize (Zea mays L.):antibacterial activity of DIMBOA and its derivatives against Ralstonia solanacearum. Molecules, 2016, 21(10):1397.
[17] Tabaglio V, Gavazzi C, Schulz M, et al. Alternative weed control using the allelopathic effect of natural benzoxazinoids from rye mulch. Agronomy for Sustainable Development, 2008, 28(3):397-401.
[18] Barnes J P, Putnam A R. Role of benzoxazinones in allelopathy by rye (Secale cereale L.). Journal of Chemical Ecology, 1987, 13(4):889-906.
[19] Nomura T, Ishihara A, Yanagita R C, et al. Three genomes differentially contribute to the bio-synthesis of benzoxazinones in hexaploid wheat. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(45):16490-16495.
[20] Rad U V, Hüttl R, Lottspeich F, et al. Two glucosyltransferases are involved in detoxification of benzoxazinoids in maize. Plant Journal, 2001, 28(6):633-642.
[21] Manuwoto S, Scriber J M. Consumption and utilization of experimentally altered corn by southern armyworm:Iron, nitrogen, and cyclic hydroxamates. Journal of Chemical Ecology, 1985, 11(11):1469-1483.
[22] Epstein W W, Rowsemitt C N, Berger P J, et al. Dynamics of 6-methoxybenzoxazolinone in winter wheat:Effects of photoperiod and temperature. Journal of Chemical Ecology, 1986, 12(10):2011-2020.
[23] Frey M, Gierl A. Analysis of a chemical plant defense mechanism in grasses. Science, 1997, 277(5326):696-699.
[24] Von R U, Hüttl R, Lottspeich F, et al. Two glucosyltransferases are involved in detoxification of benzoxazinoids in maize. Plant Journal, 2001, 28(6):633-642.
[25] Jonczyk R, Schmidt H, Osterrieder A, et al. Elucidation of the final reactions of DIMBOA-glucoside biosynthesis in maize:characterization of Bx6 and Bx7. Plant Physiology, 2008, 146(3):1053-1063.
[26] Sicker D, Frey M, Schulz M, et al. Role of natural benzoxazinones in the survival strategy of plants. International Review of Cytology, 2000, 198(4):319.
[27] Meihls L N, Handrick V, Glauser G, et al. Natural variation in maize aphid resistance is associated with 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one glucoside methyltransferase activity. Plant Cell, 2013, 25(6):2341-2355.
[28] Handrick V, Robert C A, Ahern K R, et al. Biosynthesis of 8-O-methylated benzoxazinoid defense compounds in maize. Plant Cell, 2016, 28(7):1682-1700.
[29] Sue M, Nakamura C, Nomura T. Dispersed benzoxazinone gene cluster:molecular characterization and chromosomal localization of glucosyltransferase and glucosidase genes in wheat and rye. Plant Physiology, 2011, 157(3):985-997.
[30] Wouters F C, Blanchette B, Gershenzon J, et al. Plant defense and herbivore counter-defense:benzoxazinoids and insect herbivores. Phytochemistry Reviews, 2016, 15(6):1127-1151.
[1] ZHANG Heng,LIU Hui-yan,PAN Lin,WANG Hong-yan,LI Xiao-fang,WANG Tong,FANG Hai-tian. Research Strategy for Biosynthesis of Gamma Aminobutyric Acid[J]. China Biotechnology, 2021, 41(8): 110-119.
[2] LI Bing,ZHANG Chuan-bo,SONG Kai,LU Wen-yu. Research Progress in Biosynthesis of Rare Ginsenosides[J]. China Biotechnology, 2021, 41(6): 71-88.
[3] MIAO Yi-nan,LI Jing-zhi,WANG Shuai,LI Chun,WANG Ying. Research Progress of Key Enzymes in Terpene Biosynthesis[J]. China Biotechnology, 2021, 41(6): 60-70.
[4] ZHAI Jun-ye,CHENG Xu,SUN Ze-min,LI Chun,LV Bo. Current Advances in Biosynthesis of Acteoside[J]. China Biotechnology, 2021, 41(5): 94-104.
[5] WANG Guang-lu, WANG Meng-yuan, ZHOU Yi-fei, MA Ke, ZHANG Fan, YANG Xue-peng. Research Progress in Pyrrologuinoline Quinone Biosynthesis[J]. China Biotechnology, 2021, 41(1): 103-113.
[6] GUO Er-peng, ZHANG Jian-zhi, SI Tong. Recent Advances in the High-throughput Engineering of Lanthipeptides[J]. China Biotechnology, 2021, 41(1): 30-41.
[7] LIU Xiao-chen, FAN Dai-di, YANG Fan, WU Zhan-sheng. Advances in Microbial Production of Ginsenoside and Its Derivatives[J]. China Biotechnology, 2021, 41(1): 80-93.
[8] DUAN Hai-rong,WEI Sai-jin,LI Xun-hang. Advances in Rhamnolipid Biosynthesis by Pseudomonas aeruginosa Research[J]. China Biotechnology, 2020, 40(9): 43-51.
[9] DENG Ting-shan,WU Guo-gan,SUN Yu,TANG Xue-ming. Advances in Biosynthesis of Phenyllactic Acid[J]. China Biotechnology, 2020, 40(9): 62-68.
[10] YAN Wei-huan,HUANG Tong,HONG Jie-fang,MA Yuan-yuan. Recent Advances in Butanol Biosynthesis of Escherichia coli[J]. China Biotechnology, 2020, 40(9): 69-76.
[11] Meng-ying OU,Xiao-zheng WANG,Shuang-jun LIN,Tong-wei GUAN,Yi-jin LIN. A Review of Studies on Streptonigrin[J]. China Biotechnology, 2019, 39(7): 100-107.
[12] Shuo XU,Wen-yu LU. Progress of Heterologous Biosynthesis of Terpenoids in Engineered Corynebacterium glutamicum[J]. China Biotechnology, 2019, 39(6): 91-96.
[13] Si-li YU,Xue LIU,Zhao-yu ZHANG,Hong-jian YU,Guang-rong ZHAO. Advances of Betalains Biosynthesis and Metabolic Regulation[J]. China Biotechnology, 2018, 38(8): 84-91.
[14] Min YAO,Shu-hua ZHU,Fo-sheng LI,Shi-yan ZHANG,Lin TANG. Analysis of Salt Tolerance and Insect Resistance of Transgenic Tobacco Expressing AtCYSa from Arabidopsis[J]. China Biotechnology, 2018, 38(4): 8-16.
[15] ZHANG Ya-guang, ZHANG Chuan-bo, LU Wen-yu. Progress of Biosynthesis of Sophorolipids and Its Derivatives Production in Starmerella bombicola[J]. China Biotechnology, 2017, 37(9): 134-140.