Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (5): 87-93    DOI: 10.13523/j.cb.2101018
    
Research and Application Progress of Signal Peptides in Escherichia coli Secretion Systems
HE Ruo-yu1,2,LIN Fu-yu2,GAO Xiang-dong1,*(),LIU Jin-yi2,*()
1 School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
2 Beijing Tri-Prime Genetic Engineering Co., Ltd, Beijing 102600, China
Download: HTML   PDF(429KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Escherichia coli has become a commonly used system for expressing recombinant proteins due to its obvious advantages. However, E. coli does not have the oxidative conditions and molecular mechanisms for the formation of disulfide bonds in the cytoplasm, and high-level expression often tends to aggregate to form inclusion bodies, which limits its use. Signal peptides to guide proteins secretion can overcome this shortcoming. The proteins with signal peptides are secreted by the Sec or/and Tat systems in E. coli. The E. coli secretion systems and the structure of signal peptides were summarized. Meanwhile, the research and application progress of six commonly used signal peptides in recent years were introduced. Finally, the problems and improvement measures in the application of signal peptides were summarized,which would provide more useful information and strategies for researchers to select signal peptides reasonably and optimize the expression of recombinant proteins.



Key wordsSignal peptide      Escherichia coli      Secretion system     
Received: 14 January 2021      Published: 01 June 2021
ZTFLH:  Q816  
Corresponding Authors: Xiang-dong GAO,Jin-yi LIU     E-mail: xdgao@cpu.edu.cn;liujinyi@triprime.com
Cite this article:

HE Ruo-yu,LIN Fu-yu,GAO Xiang-dong,LIU Jin-yi. Research and Application Progress of Signal Peptides in Escherichia coli Secretion Systems. China Biotechnology, 2021, 41(5): 87-93.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2101018     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I5/87

名称 氨基酸序列 来源 分泌系统
OmpA信号肽 MKKTAIATAVALAGFATVAQA 大肠杆菌外膜蛋白 Sec(翻译后转运)
PelB信号肽 MKYLLPTAAAGLLLLAAQPAMA 胡萝卜欧文氏菌 Sec(翻译后转运)
STII信号肽 MKKNIAFLLASMFVFSIATNAYA 大肠杆菌细胞外肽毒素 Sec(翻译后转运)
PhoA信号肽 MKQSTIALALLPLLFTPVTKA 大肠杆菌周质蛋白 Sec(翻译后转运)
DsbA信号肽 MKKIWLALAGLVLAFSASA 大肠杆菌周质蛋白 Sec(共翻译转运)
TorA信号肽 MNNNDLFQASRRRFLAQLGGLTVAGMLGPSLLTPRRATAAQAA 大肠杆菌周质蛋白 Tat
Table 1 Six commonly used signal peptides in E. coli system
[1]   Hajihassan Z, Khairkhah N, Zandsalimi F. Enhanced periplasmic expression of human activin A in Escherichia coli using a modified signal peptide. Preparative Biochemistry & Biotechnology, 2020,50(2):141-147.
[2]   Sørensen H P, Mortensen K K. Advanced genetic strategies for recombinant protein expression in Escherichia coli. Journal of Biotechnology, 2005,115(2):113-128.
doi: 10.1016/j.jbiotec.2004.08.004
[3]   Fessl T, Watkins D, Oatley P, et al. Dynamic action of the Sec machinery during initiation, protein translocation and termination. Elife, 2018,7:e35112.
doi: 10.7554/eLife.35112
[4]   Jomaa A, Boehringer D, Leibundgut M, et al. Structures of the E. coli translating ribosome with SRP and its receptor and with the translocon. Nature Communications, 2016,7:10471.
doi: 10.1038/ncomms10471
[5]   Freudl R. Signal peptides for recombinant protein secretion in bacterial expression systems. Microbial Cell Factories, 2018,17(1):1-10.
doi: 10.1186/s12934-017-0850-2
[6]   Blümmel A S, Drepper F, Knapp B, et al. Structural features of the TatC membrane protein that determine docking and insertion of a twin-arginine signal peptide. The Journal of Biological Chemistry, 2017,292(52):21320-21329.
doi: 10.1074/jbc.M117.812560
[7]   Huang Q, Palmer T. Signal peptide hydrophobicity modulates interaction with the twin-arginine translocase. mBio, 2017,8(4):e00909-e00917.
[8]   Kang D G, Seo J H, Jo B H, et al. Versatile signal peptide of Flavobacterium-originated organophosphorus hydrolase for efficient periplasmic translocation of heterologous proteins in Escherichia coli. Biotechnology Progress, 2016,32(4):848-854.
doi: 10.1002/btpr.v32.4
[9]   Owji H, Nezafat N, Negahdaripour M, et al. A comprehensive review of signal peptides: Structure, roles, and applications. European Journal of Cell Biology, 2018,97(6):422-441.
doi: 10.1016/j.ejcb.2018.06.003
[10]   von Heijne G. Patterns of amino acids near signal-sequence cleavage sites. European Journal of Biochemistry, 1983,133(1):17-21.
pmid: 6852022
[11]   Ting Y T, Harris P W R, Batot G, et al. Peptide binding to a bacterial signal peptidase visualized by peptide tethering and carrier-driven crystallization. IUCrJ, 2016,3(Pt 1):10-19.
doi: 10.1107/S2052252515019971
[12]   Low K O, Jonet M A, Ismail N F, et al. Optimization of a Bacillus sp. signal peptide for improved recombinant protein secretion and cell viability in Escherichia coli. Bioengineered, 2012,3(6):334-338.
doi: 10.4161/bioe.21454
[13]   Zhou Y Z, Liu P, Gan Y T, et al. Enhancing full-length antibody production by signal peptide engineering. Microbial Cell Factories, 2016,15(1):1-11.
doi: 10.1186/s12934-015-0402-6
[14]   Jeiranikhameneh M, Moshiri F, Keyhan Falasafi S, et al. Designing signal peptides for efficient periplasmic expression of human growth hormone in Escherichia coli. Journal of Microbiology and Biotechnology, 2017,27(11):1999-2009.
doi: 10.4014/jmb.1703.03080 pmid: 28851205
[15]   Juibari A D, Ramezani S, Rezadoust M H. Bioinformatics analysis of various signal peptides for periplasmic expression of parathyroid hormone in E. coli. J Med Life, 2019,12(2):184-191.
[16]   Confer A W, Ayalew S. The OmpA family of proteins: Roles in bacterial pathogenesis and immunity. Veterinary Microbiology, 2013,163(3-4):207-222.
doi: 10.1016/j.vetmic.2012.08.019
[17]   Nielsen D W, Ricker N, Barbieri N L, et al. Outer membrane protein A (OmpA) of extraintestinal pathogenic Escherichia coli. BMC Research Notes, 2020,13(1):1-7.
doi: 10.1186/s13104-019-4871-2
[18]   Movva N R, Nakamura K, Inouye M. Amino acid sequence of the signal peptide of ompA protein, a major outer membrane protein of Escherichia coli. Journal of Biological Chemistry, 1980,255(1):27-29.
doi: 10.1016/S0021-9258(19)86257-9
[19]   Baars L, Ytterberg A J, Drew D, et al. Defining the role of the Escherichia coli chaperone SecB using comparative proteomics. The Journal of Biological Chemistry, 2006,281(15):10024-10034.
doi: 10.1074/jbc.M509929200
[20]   Sun X Y, Shen W, Gao Y Y, et al. Heterologous expression and purification of a marine alginate lyase in Escherichia coli. Protein Expression and Purification, 2019,153:97-104.
doi: 10.1016/j.pep.2018.09.002
[21]   Pechsrichuang P, Songsiriritthigul C, Haltrich D, et al. OmpA signal peptide leads to heterogenous secretion of B. subtilis chitosanase enzyme from E. coli expression system. SpringerPlus, 2016,5(1):1-10.
doi: 10.1186/s40064-015-1659-2
[22]   Zhao F K, Song Q Z, Wang B B, et al. Secretion of the recombination α-amylase in Escherichia coli and purification by the gram-positive enhancer matrix (GEM) particles. International Journal of Biological Macromolecules, 2019,123:91-96.
doi: 10.1016/j.ijbiomac.2018.11.047
[23]   Wang H, Zhang L, Zhang W J, et al. Secretory expression of biologically active chondroitinase ABC I for production of chondroitin sulfate oligosaccharides. Carbohydrate Polymers, 2019,224:115135.
doi: S0144-8617(19)30802-1 pmid: 31472845
[24]   刘应洲, 谭咪乐, 李永杰, 等. 衍生自大肠杆菌OmpA信号肽的多肽P-KKK杀菌作用研究. 内科, 2018,13(3):284-287.
[24]   Liu Y Z, Tan M L, Li Y J, et al. Study on the bactericidal activity of polypeptide P-KKK derived from E. coli OmpA signal peptide. Internal Medicine, 2018,13(3):284-287.
[25]   Lei S P, Lin H C, Wang S S, et al. Characterization of the Erwinia carotovora peh gene and its product polygalacturonase. Gene, 1992,117(1):119-124.
pmid: 1644302
[26]   Pugsley A P. The complete general secretory pathway in gram-negative bacteria. Microbiological Reviews, 1993,57(1):50-108.
pmid: 8096622
[27]   Mohajeri A, Pilehvar-Soltanahmadi Y, Pourhassan-Moghaddam M, et al. Cloning and expression of recombinant human endostatin in periplasm of Escherichia coli expression system. Advanced Pharmaceutical Bulletin, 2016,6(2):187-194.
doi: 10.15171/apb.2016.026 pmid: 27478780
[28]   Sriwidodo S, Subroto T, Maksum I, et al. Optimization of secreted recombinant human epidermal growth factor production using pectate lyase B from Escherichia coli BL21(DE3) by central composite design and its production in high cell density culture. Journal of Pharmacy and Bioallied Sciences, 2019,11(8):562.
doi: 10.4103/jpbs.JPBS_207_19
[29]   Kulmala A, Huovinen T, Lamminmäki U. Improvement of Fab expression by screening combinatorial synonymous signal sequence libraries. Microbial Cell Factories, 2019,18(1):157.
doi: 10.1186/s12934-019-1210-1
[30]   Robertson K E, Truong C D, Craciunescu F M, et al. Membrane directed expression in Escherichia coli of BBA57 and other virulence factors from the Lyme disease agent Borrelia burgdorferi. Scientific Reports, 2019,9:17606.
doi: 10.1038/s41598-019-53830-x pmid: 31772280
[31]   Deb A, Johnson W A, Kline A P, et al. Bacterial expression, correct membrane targeting and functional folding of the HIV-1 membrane protein Vpu using a periplasmic signal peptide. PLoS One, 2017,12(2):e0172529.
doi: 10.1371/journal.pone.0172529
[32]   Pan X, Yu Q, Chu J L, et al. Fitting replacement of signal peptide for highly efficient expression of three penicillin G acylases in E. coli. Applied Microbiology and Biotechnology, 2018,102(17):7455-7464.
doi: 10.1007/s00253-018-9163-6
[33]   Wang P P, Ma J F, Zhang Y, et al. Efficient secretory overexpression of endoinulinase in Escherichia coli and the production of inulooligosaccharides. Applied Biochemistry and Biotechnology, 2016,179(5):880-894.
doi: 10.1007/s12010-016-2037-4
[34]   Picken R N, Mazaitis A J, Maas W K, et al. Nucleotide sequence of the gene for heat-stable enterotoxin II of Escherichia coli. Infection and Immunity, 1983,42(1):269-275.
doi: 10.1128/IAI.42.1.269-275.1983
[35]   卢晨, 赵辉, 邹文艺, 等. 重组人干扰素α-2b在大肠杆菌中分泌表达. 生物学杂志, 2011,28(3):58-62.
[35]   Lu C, Zhao H, Zou W Y, et al. Secretion expression of recombinate human interferon α-2b by Escherichia coli. Journal of Biology, 2011,28(3):58-62.
[36]   Luo M Y, Zhao M Q, Cagliero C, et al. A general platform for efficient extracellular expression and purification of Fab from Escherichia coli. Applied Microbiology and Biotechnology, 2019,103(8):3341-3353.
doi: 10.1007/s00253-019-09745-8
[37]   Coleman J E. Structure and mechanism of alkaline phosphatase. Annual Review of Biophysics and Biomolecular Structure, 1992,21(1):441-483.
doi: 10.1146/annurev.bb.21.060192.002301
[38]   Mohajeri A, Abdolalizadeh J, Pilehvar-Soltanahmadi Y, et al. Expression and secretion of endostar protein by Escherichia coli: optimization of culture conditions using the response surface methodology. Molecular Biotechnology, 2016,58(10):634-647.
doi: 10.1007/s12033-016-9963-9 pmid: 27377615
[39]   Seyed Hosseini Fin N A, Barshan-Tashnizi M, Sajjadi S M, et al. The effects of overexpression of cytoplasmic chaperones on secretory production of hirudin-PA in E. coli. Protein Expression and Purification, 2019,157:42-49.
doi: S1046-5928(18)30602-8 pmid: 30708036
[40]   Schierle C F, Berkmen M, Huber D, et al. The DsbA signal sequence directs efficient, cotranslational export of passenger proteins to the Escherichia coli periplasm via the signal recognition particle pathway. Journal of Bacteriology, 2003,185(19):5706-5713.
doi: 10.1128/JB.185.19.5706-5713.2003
[41]   Schlegel S, Rujas E, Ytterberg A J, et al. Optimizing heterologous protein production in the periplasm of E. coli by regulating gene expression levels. Microbial Cell Factories, 2013,12(1):1-12.
doi: 10.1186/1475-2859-12-1
[42]   Zhang W Q, Lu J, Zhang S W, et al. Development an effective system to expression recombinant protein in E. coli via comparison and optimization of signal peptides: Expression of Pseudomonas fluorescens BJ-10 thermostable lipase as case study. Microbial Cell Factories, 2018,17(1):1-12.
doi: 10.1186/s12934-017-0850-2
[43]   Kasli I M, Thomas O R T, Overton T W. Use of a design of experiments approach to optimise production of a recombinant antibody fragment in the periplasm of Escherichia coli: selection of signal peptide and optimal growth conditions. AMB Express, 2019,9(1):5.
doi: 10.1186/s13568-018-0727-8
[44]   Santini C L, Ize B, Chanal A, et al. A novel sec-independent periplasmic protein translocation pathway in Escherichia coli. The EMBO Journal, 1998,17(1):101-112.
doi: 10.1093/emboj/17.1.101
[45]   Sargent F. Overlapping functions of components of a bacterial Sec-independent protein export pathway. The EMBO Journal, 1998,17(13):3640-3650.
doi: 10.1093/emboj/17.13.3640
[46]   Sutherland G A, Grayson K J, Adams N B P, et al. Probing the quality control mechanism of the Escherichia coli twin-arginine translocase with folding variants of a de novo-designed heme protein. Journal of Biological Chemistry, 2018,293(18):6672-6681.
doi: 10.1074/jbc.RA117.000880 pmid: 29559557
[47]   Guerrero Montero I, Richards K L, Jawara C, et al. Escherichia coli “TatExpress” strains export several g/L human growth hormone to the periplasm by the Tat pathway. Biotechnology and Bioengineering, 2019,116(12):3282-3291.
doi: 10.1002/bit.27147 pmid: 31429928
[48]   Jong W S P, Vikström D, Houben D E, et al. Application of an E. coli signal sequence as a versatile inclusion body tag. Microbial Cell Factories, 2017,16(1):1-13.
doi: 10.1186/s12934-016-0616-2
[49]   Choo K H, Ranganathan S. Flanking signal and mature peptide residues influence signal peptide cleavage. BMC Bioinformatics, 2008,9(12):1-11.
doi: 10.1186/1471-2105-9-1
[50]   Kipriyanov S M, Moldenhauer G, Little M. High level production of soluble single chain antibodies in small-scale Escherichia coli cultures. Journal of Immunological Methods, 1997,200(1-2):69-77.
doi: 10.1016/S0022-1759(96)00188-3
[51]   Yang J, Moyana T, MacKenzie S, et al. One hundred seventy-fold increase in excretion of an FV fragment-tumor necrosis factor alpha fusion protein (sFV/TNF-alpha) from Escherichia coli caused by the synergistic effects of Glycine and triton X-100. Applied and Environmental Microbiology, 1998,64(8):2869-2874.
doi: 10.1128/AEM.64.8.2869-2874.1998
[52]   Ruano-Gallego D, Fraile S, Gutierrez C, et al. Screening and purification of nanobodies from E. coli culture supernatants using the hemolysin secretion system. Microbial Cell Factories, 2019,18(1):1-13.
doi: 10.1186/s12934-018-1049-x
[53]   Zhang H, Hsieh Y H, Lin B R, et al. Specificity of SecYEG for PhoA precursors and SecA homologs on SecA protein-conducting channels. Biochemical and Biophysical Research Communications, 2013,437(2):212-216.
doi: 10.1016/j.bbrc.2013.06.039 pmid: 23791875
[1] QIAO Sheng-tai,WANG Man-qi,XU Hui-ni. Functional Analysis of Prokaryotic Expression Protein of Tomato SlTpx in Vitro[J]. China Biotechnology, 2021, 41(8): 25-32.
[2] HUANG Zhao-hong,HUANG Yun-hong,HUANG Yan-mei,LONG Zhong-er,SHAN Shan. Advances in Detection and Typing of Diarrheal Escherichia coli with PCR[J]. China Biotechnology, 2020, 40(7): 82-90.
[3] AN Ming-hui,TIAN Wen,HAN Xiao-xu,SHANG Hong. Construction and Phenotypic Analyses of Recombinant Lactobacillus Expressing Single-Chain Antibody of HIV[J]. China Biotechnology, 2019, 39(10): 1-8.
[4] Xue-yao FANG,Long-hua HU,Ya-ping HANG,Feng YU,Yan-hui CHEN,Qiao-shi ZHONG. Research Progress of Type VI Secretion System in Pseudomonas aeruginosa[J]. China Biotechnology, 2018, 38(9): 88-93.
[5] Xue-ting HE,Min-hua ZHANG,Jie-fang HONG,Yuan-yuan MA. Research Progress on Butanol-Tolerant Strain and Tolerance Mechanism of Escherichia coli[J]. China Biotechnology, 2018, 38(9): 81-87.
[6] Nan WANG,Lv-hua JIN,Ling ZHANG,Rong LIN,Hai-lin YANG. The Effect of Signal Peptides on the Expression of Leucine Dehydrogenase and Enzymatic Properties in Bacillus subtilis[J]. China Biotechnology, 2018, 38(4): 46-53.
[7] ZHANG Ling,WANG Nan,JIN Lv-hua,LIN Rong,YANG Hai-lin. To Promote the Expression of Leucine Dehydrogenase in Bacillus subtilis via Dual-Promoter and Fermentation Research[J]. China Biotechnology, 2018, 38(12): 21-31.
[8] YANG Qing, WANG Bin, WANG Ya-wei, ZHANG Hua-shan, XIONG Hai-rong, ZHANG Li. Comparison of Signal Peptides for Two Hemicellulase Secretory Expression[J]. China Biotechnology, 2017, 37(8): 15-22.
[9] CHEN Long-guan, QIN Jin-hong, HUANG Yun-na, MAI Jun-xin, XIE Qiu-ling. Optimized Signal Peptides Sequences for the Development of High Expressing McAbs[J]. China Biotechnology, 2016, 36(3): 77-81.
[10] ZHOU Yong, XU Gang, YANG Li-rong, WU Jian-ping. Effects of Signal Peptides's Optimization on the Secretion of Lipase S in Bacillus subtilis[J]. China Biotechnology, 2015, 35(9): 42-49.
[11] CHEN Ke, HUANG Xiao, LU Lei, XING Yun, HOU Jing, WU Jie, LIU Jing-jing. Comparison of celY Gene from Erwinia chrysanthemi Expression in Escherichia coli Driven by Different Regulatory Elements[J]. China Biotechnology, 2012, 32(02): 24-28.
[12] JIA Qi-Yu, WANG Yu-Guang, SUN Jian-Bei, LEI Xue-Hua, GU Wen-Liang. Isolation of a Strain of Endophytic Bacteria against Banana Fusarium Wilt and Activity Analysis of Signal Peptide of its Chitinase[J]. China Biotechnology, 2010, 30(09): 24-30.
[13] HU E-Dong, TAO Dong-Sheng. Construction and Determination of an Episomal Secreting Expression Vector:pYES2/CT/α-factor for Saccharomyces cerevisiae[J]. China Biotechnology, 2009, 29(12): 49-53.
[14] . Analysis and Prediction of Secreted Proteins in Escherichia coli UTI89[J]. China Biotechnology, 2007, 27(7): 100-105.
[15] . Efficient Secretion of Recombinant PEX in COS7 Cells[J]. China Biotechnology, 2007, 27(5): 1-5.