Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (12): 76-81    DOI: 10.13523/j.cb.20181210
Orginal Article     
Application of Shape Memory Polymer in Tissue Engineering
XI Lai-shun1,YUN Peng1,WANG Yuan-dou2,ZHANG Guan-hong3,XING Quan-sheng4,CHEN Yang-sheng5,SU Feng1,2,**()
1 College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
2 Institute of High Performance Polymers, Qingdao University of Science and Technology, Qingdao 266042, China
3 Shengli Oilfield Central Hospital, Dongying 257000, China
4 Qingdao Women and Children’s Hospital, Qingdao 266034, China;
5 Qingdao Chiatai Haier Pharmaceutical Co., LTD, Qingdao 266103, China
Download: HTML   PDF(399KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Shape memory polymers are smart materials composed of a stationary phase and a reversible phase that induce shape change under external stimulus conditions. Compared with traditional shape memory alloys and ceramics, it has specific biodegradability, higher mechanical property control space, stronger deformation recovery ability and better biocompatibility. Due to the material properties, the application of shape memory polymers in the field of tissue engineering has become more and more extensive in recent years, including vascular tissue, skeletal muscle tissue, nerve tissue and bone tissue. In this paper, the experimental innovations, technological breakthroughs and application developments of shape memory polymers in various fields of tissue engineering have been reviewed in recent years, for example, as novel porous vascular stents, skeletal muscle repair stents, nerve repair catheters and bone defect fillers. It is foreseeable that with the continuous development of technology and materials, the application of shape memory polymers in the field of tissue engineering will be more mature.



Key wordsShape memory polymers      Tissue engineering      3D scaffolds     
Received: 21 June 2018      Published: 10 January 2019
ZTFLH:  Q819  
Corresponding Authors: Feng SU     E-mail: sufengvip@126.com
Cite this article:

XI Lai-shun,YUN Peng,WANG Yuan-dou,ZHANG Guan-hong,XING Quan-sheng,CHEN Yang-sheng,SU Feng. Application of Shape Memory Polymer in Tissue Engineering. China Biotechnology, 2018, 38(12): 76-81.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20181210     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I12/76

[1]   Hager M D, Bode S, Weber C , et al. Shape memory polymers: past, present and future developments. Progress in Polymer Science, 2015,49:3-33.
doi: 10.1016/j.progpolymsci.2015.04.002
[2]   Hasan S M, Nash L D, Maitland D J . Porous shape memory polymers: design and applications. Journal of Polymer Science Part B: Polymer Physics, 2016,54(14):1300-1318.
[3]   Jiang Z C, Xiao Y Y, Kang Y , et al. Shape memory polymers based on supramolecular interactions. ACS Applied Materials & Interfaces, 2017,9(24):20276-20293.
doi: 10.1021/acsami.7b03624 pmid: 28553712
[4]   Bodaghi M, Damanpack A R, Liao W H . Triple shape memory polymers by 4D printing. Smart Materials and Structures, 2018,27(6):065010.
[5]   Lee A Y, An J, Chua C K . Two-way 4D printing: a review on the reversibility of 3D-printed shape memory materials. Engineering, 2017,3(5):663-674.
doi: 10.1016/J.ENG.2017.05.014
[6]   Kim Y J, Matsunaga Y T . Thermo-responsive polymers and their application as smart biomaterials. Journal of Materials Chemistry B, 2017,5(23):4307-4321.
doi: 10.1039/C7TB00157F
[7]   Mangeon C, Renard E, Thevenieau F , et al. Networks based on biodegradable polyesters: an overview of the chemical ways of crosslinking. Materials Science and Engineering: C, 2017,80:760-770.
doi: 10.1016/j.msec.2017.07.020 pmid: 28866226
[8]   Liu T, Zhou T, Yao Y , et al. Stimulus methods of multi-functional shape memory polymer nanocomposites: a review. Composites Part A: Applied Science and Manufacturing, 2017,100:20-30.
[9]   Behl M, Lendlein A . Actively moving polymers. Soft Matter, 2007,3(1):58-67.
[10]   Hu J, Zhu Y, Huang H , et al. Recent advances in shape-memory polymers: structure, mechanism, functionality, modeling and applications. Progress in Polymer Science, 2012,37(12):1720-1763.
doi: 10.1016/j.progpolymsci.2012.06.001
[11]   Mu T, Liu L, Lan X , et al. Shape memory polymers for composites. Composites Science and Technology, 2018,160:169-198.
doi: 10.1016/j.compscitech.2018.03.018
[12]   Peterson G I, Dobrynin A V, Becker M L . Biodegradable shape memory polymers in medicine. Advanced Healthcare Materials, 2017,6(21):1700694.
doi: 10.1002/adhm.201700694 pmid: 28941154
[13]   Weng P, Yin X, Yang S , et al. Functionalized magnesium hydroxide fluids/acrylate-coated hybrid cotton fabric with enhanced mechanical, flame retardant and shape-memory properties. Cellulose, 2018,25(2):1425-1436.
doi: 10.1007/s10570-017-1611-4
[14]   Wu S, Xu W, Balamurugan G P , et al. Recovery behaviour of shape memory polyurethane based laminates after thermoforming. Smart Materials and Structures, 2017,26(11):115002.
[15]   Eisenhaure J, Kim S . High-strain shape memory polymers as practical dry adhesives. International Journal of Adhesion and Adhesives, 2018,81:74-78.
[16]   Mirvakili S M, Hunter I W . Artificial muscles: mechanisms, applications, and challenges. Advanced Materials, 2018,30(6):1704407.
doi: 10.1002/adma.201704407 pmid: 29250838
[17]   Duarah R, Singh Y P, Gupta P , et al. High performance bio-based hyperbranched polyurethane/carbon dot-silver nanocomposite: a rapid self-expandable stent. Biofabrication, 2016,8(4):045013.
doi: 10.1088/1758-5090/8/4/045013 pmid: 27788125
[18]   Kashif M, Yun B, Lee K S , et al. Biodegradable shape-memory poly (ε-caprolactone)/polyhedral oligomeric silsequioxane nanocomposites: sustained drug release and hydrolytic degradation. Materials Letters, 2016,166:125-128.
doi: 10.1016/j.matlet.2015.12.051
[19]   Jing X, Mi H Y, Huang H X , et al. Shape memory thermoplastic polyurethane (TPU)/poly (ε-caprolactone)(PCL) blends as self-knotting sutures. Journal of the Mechanical Behavior of Biomedical Materials, 2016,64:94-103.
doi: 10.1016/j.jmbbm.2016.07.023 pmid: 27490212
[20]   Wong Y S, Salvekar A V, Zhuang K D , et al. Bioabsorbable radiopaque water-responsive shape memory embolization plug for temporary vascular occlusion. Biomaterials, 2016,102:98-106.
doi: 10.1016/j.biomaterials.2016.06.014 pmid: 27322962
[21]   Atoufi Z, Zarrintaj P, Motlagh G H , et al. A novel bio electro active alginate-aniline tetramer/agarose scaffold for tissue engineering: synthesis, characterization, drug release and cell culture study. Journal of Biomaterials Science, Polymer Edition, 2017,28(15):1617-1638.
doi: 10.1080/09205063.2017.1340044 pmid: 28589747
[22]   Meng H, Li G . A review of stimuli-responsive shape memory polymer composites. Polymer, 2013,54(9):2199-2221.
doi: 10.1016/j.polymer.2013.02.023
[23]   Zhang Y S, Oklu R, Dokmeci M R , et al. Three-dimensional bioprinting strategies for tissue engineering. Cold Spring Harbor Perspectives in Medicine, 2018,8(2):a025718.
doi: 10.1101/cshperspect.a025718 pmid: 28289247
[24]   Mortimer C J, Wright C J . The fabrication of iron oxide nanoparticle-nanofiber composites by electrospinning and their applications in tissue engineering. Biotechnology Journal, 2017,12(7):1600693.
doi: 10.1002/biot.201600693 pmid: 28635132
[25]   Kelly C N, Miller A T, Hollister S J , et al. Design and structure-function characterization of 3D printed synthetic porous biomaterials for tissue engineering. Advanced Healthcare Materials, 2018,7(7):1701095.
doi: 10.1002/adhm.201701095 pmid: 29280325
[26]   Miao S, Castro N, Nowicki M , et al. 4D printing of polymeric materials for tissue and organ regeneration. Materials Today, 2017,20(10):577-591.
doi: 10.1016/j.mattod.2017.06.005 pmid: 29403328
[27]   Townsend N, Wilson L, Bhatnagar P , et al. Cardiovascular disease in Europe: epidemiological update 2016. European Heart Journal, 2016,37(42):3232-3245.
doi: 10.1093/eurheartj/ehw468 pmid: 27856561
[28]   Liu R H, Ong C S, Fukunishi T , et al. Review of vascular graft studies in large animal models. Tissue Engineering Part B: Reviews, 2018,24(2):133-143.
doi: 10.1089/ten.TEB.2017.0350 pmid: 28978267
[29]   Dimitrievska S, Niklason L E . Historical perspective and future direction of blood vessel developments. Cold Spring Harbor Perspectives in Medicine, 2018,8(2):a025742.
doi: 10.1101/cshperspect.a025742 pmid: 28348177
[30]   Pashneh-Tala S , MacNeil S, Claeyssens F. The tissue-engineered vascular graft-past, present, and future. Tissue Engineering Part B: Reviews, 2015,22(1):68-100.
[31]   Xiang P, Wang S S, He M , et al. The in vitro and in vivo biocompatibility evaluation of electrospun recombinant spider silk protein/PCL/gelatin for small caliber vascular tissue engineering scaffolds. Colloids and Surfaces B: Biointerfaces, 2018,163:19-28.
[32]   Motlagh D, Yang J, Lui K Y , et al. Hemocompatibility evaluation of poly (glycerol-sebacate) in vitro for vascular tissue engineering. Biomaterials, 2006,27(24):4315-4324.
doi: 10.1016/j.biomaterials.2006.04.010
[33]   Zhao Q, Wang J, Cui H , et al. Programmed shape‐morphing scaffolds enabling facile 3D endothelialization. Advanced Functional Materials, 2018,28(29):1801027.
[34]   Liu D, Xiang T, Gong T , et al. Bioinspired 3D multilayered shape memory scaffold with a hierarchically changeable micropatterned surface for efficient vascularization. ACS Applied Materials & Interfaces, 2017,9(23):19725-19735.
doi: 10.1021/acsami.7b05933 pmid: 28540725
[35]   Larouche J, Greising S M, Corona B T , et al. Robust inflammatory and fibrotic signaling following volumetric muscle loss: a barrier to muscle regeneration. Cell Death & Disease, 2018,9(3):409.
doi: 10.1038/s41419-018-0455-7
[36]   Grogan B F, Hsu J R , Skeletal Trauma Research Consortium. Volumetric muscle loss. JAAOS-Journal of the American Academy of Orthopaedic Surgeons, 2011,19:S35-S37.
[37]   Potter S M, Ferris S I . Reliability of functioning free muscle transfer and vascularized ulnar nerve grafting for elbow flexion in complete brachial plexus palsy. Journal of Hand Surgery (European Volume), 2017,42(7):693-699.
doi: 10.1177/1753193417702029
[38]   Grasman J M, Zayas M J, Page R L , et al. Biomimetic scaffolds for regeneration of volumetric muscle loss in skeletal muscle injuries. Acta Biomaterialia, 2015,25:2-15.
doi: 10.1016/j.actbio.2015.07.038 pmid: 4562809
[39]   Wolf M T, Dearth C L, Sonnenberg S B , et al. Naturally derived and synthetic scaffolds for skeletal muscle reconstruction. Advanced Drug Delivery Reviews, 2015,84:208-221.
doi: 10.1016/j.addr.2014.08.011 pmid: 25174309
[40]   Deng Z, Guo Y, Zhao X , et al. Stretchable degradable and electroactive shape memory copolymers with tunable recovery temperature enhance myogenic differentiation. Acta Biomaterialia, 2016,46:234-244.
doi: 10.1016/j.actbio.2016.09.019 pmid: 27640917
[41]   Wang L, Cao L, Shansky J , et al. Minimally invasive approach to the repair of injured skeletal muscle with a shape-memory scaffold. Molecular Therapy, 2014,22(8):1441-1449.
doi: 10.1038/mt.2014.78 pmid: 24769909
[42]   Dalamagkas K, Tsintou M, Seifalian A . Advances in peripheral nervous system regenerative therapeutic strategies: a biomaterials approach. Materials Science and Engineering: C, 2016,65:425-432.
doi: 10.1016/j.msec.2016.04.048 pmid: 27157770
[43]   Fernandez L, Komatsu D E, Gurevich M , et al. Emerging strategies on adjuvant therapies for nerve recovery. The Journal of Hand Surgery, 2018,43(4):368-373.
doi: 10.1016/j.jhsa.2018.01.023
[44]   Zhan X, Gao M, Jiang Y , et al. Nanofiber scaffolds facilitate functional regeneration of peripheral nerve injury. Nanomedicine: Nanotechnology, Biology and Medicine, 2013,9(3):305-315.
[45]   Nishiura Y, Yamada Y, Hara Y , et al. Repair of peripheral nerve defect with direct gradual lengthening of the proximal nerve stump in rats. Journal of Orthopaedic Research, 2006,24(12):2246-2253.
doi: 10.1002/jor.20280 pmid: 17013872
[46]   Chen C, Hu J, Huang H , et al. Design of a smart nerve conduit based on a shape-memory polymer. Advanced Materials Technologies, 2016,1(4):1600015.
doi: 10.1002/admt.201600015
[47]   Kai D, Tan M J, Prabhakaran M P , et al. Biocompatible electrically conductive nanofibers from inorganic-organic shape memory polymers. Colloids and Surfaces B: Biointerfaces, 2016,148:557-565.
doi: 10.1016/j.colsurfb.2016.09.035 pmid: 27690245
[48]   Jha P, Danewalia S S, Sharma G , et al. Antimicrobial and bioactive phosphate-free glass-ceramics for bone tissue engineering applications. Materials Science and Engineering: C, 2018,86:9-17.
doi: 10.1016/j.msec.2018.01.002
[49]   Rakhmatia Y D, Ayukawa Y, Furuhashi A , et al. Current barrier membranes: titanium mesh and other membranes for guided bone regeneration in dental applications. Journal of Prosthodontic Research, 2013,57(1):3-14.
doi: 10.1016/j.jpor.2012.12.001 pmid: 23347794
[50]   Hajiali F, Tajbakhsh S, Shojaei A . Fabrication and properties of polycaprolactone composites containing calcium phosphate-based ceramics and bioactive glasses in bone tissue engineering: a review. Polymer Reviews, 2018,58(1):164-207.
doi: 10.1080/15583724.2017.1332640
[51]   Wu S, Liu X ,Yeung K W K , et al.Biomimetic porous scaffolds for bone tissue engineering. Materials Science and Engineering: R: Reports, 2014,80(1):1-36.
doi: 10.1016/j.mser.2014.04.001
[52]   Xie R, Hu J, Hoffmann O , et al. Self-fitting shape memory polymer foam inducing bone regeneration: a rabbit femoral defect study.Biochimica et Biophysica Acta (BBA)-General Subjects, 2018,1862(4):936-945.
doi: 10.1016/j.bbagen.2018.01.013 pmid: 29360569
[53]   Wang Y J, Jeng U S, Hsu S . Biodegradable water-based polyurethane shape memory elastomers for bone tissue engineering. ACS Biomaterials Science & Engineering, 2018,4(4):1397-1406.
doi: 10.1021/acsbiomaterials.8b00091
[1] ZHU Shuai,JIN Ming-jie,YANG Shu-lin. A Review on Applications of 3D Bioprinting in Cartilage Tissue Regeneration Engineering[J]. China Biotechnology, 2021, 41(5): 65-71.
[2] YU Xing-ge,LIN Kai-li. The Application of Biomaterials Based on Natural Hydrogels in Bone Tissue Engineering[J]. China Biotechnology, 2020, 40(5): 69-77.
[3] WANG Yuan-dou,SU Feng,LI Su-ming. Research Progress of Photocrosslinked Hydrogel in Tissue Engineering[J]. China Biotechnology, 2020, 40(4): 91-96.
[4] YAN Ge,QIAO Wei-hua,CAO Hong,SHI Jia-wei,DONG Nian-guo. Application of Surface Modification of Polydopamine in Tissue Engineering[J]. China Biotechnology, 2020, 40(12): 75-81.
[5] Hui-rong WU,Zhao-hui WEN. Application of Chitosan in Nerve Tissue Engineering[J]. China Biotechnology, 2019, 39(6): 73-77.
[6] Xi KANG,Ai-peng DENG,Shu-lin YANG. Research Progress of Chitosan Based Thermosensitive Hydrogels[J]. China Biotechnology, 2018, 38(5): 79-84.
[7] SUN Huai-yuan,SONG Xiao-kang,LIAO Yue-hua,LI Xiao-ou. The Application of Piezoelectric Micro-jetting Technology in the Field of Cell Bioprinting[J]. China Biotechnology, 2018, 38(12): 82-90.
[8] LI Da-wei, HE Jin, HE Feng-li, LIU Ya-li, DENG Xu-dong, YE Ya-jing, YIN Da-chuan. Advances in Application of Silk Fibroin/Chitosan Composite in Tissue Engineering[J]. China Biotechnology, 2017, 37(10): 111-117.
[9] LUO Si-shi, TANG Shun-qing. Research Progress of Agarose in Tissue Engineering[J]. China Biotechnology, 2015, 35(6): 68-74.
[10] WANG Dian-liang. Three-dimensional Construction of Tissue Organ and Concept of in situ Tissue Engineering[J]. China Biotechnology, 2014, 34(8): 112-116.
[11] WANG Dian-liang. Seed Cells[J]. China Biotechnology, 2014, 34(7): 108-113.
[12] WANG Dian-liang. The Birth and Development of Tissue Engineering[J]. China Biotechnology, 2014, 34(5): 122-129.
[13] ZHANG Zhi-qiang, HUANG Xiang-hua, ZHAO Lin-yuan. The Effects of Microenvironment on Cells and The Application of Bionics in Tissue Engineering Scaffolds[J]. China Biotechnology, 2014, 34(4): 101-109.
[14] WANG Dian-liang. Types and Applications of Tissue Engineering Products[J]. China Biotechnology, 2014, 34(11): 125-129.
[15] WANG Dian-liang. Clinical Researches of Tissue Engineering[J]. China Biotechnology, 2014, 34(10): 114-120.