Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (6): 73-77    DOI: 10.13523/j.cb.20190610
    
Application of Chitosan in Nerve Tissue Engineering
Hui-rong WU,Zhao-hui WEN()
Department of Neurology,The First Affiliated Hospital of Harbin Medical University,Harbin 150001,China
Download: HTML   PDF(362KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The functional polymer material chitosan (CS) and other composite materials have made some progress in the field of biomedicine as a scaffold material for tissue engineering. The functional groups of CS can polymerize some polymers to enhance the performance of all aspects of its composite scaffold, making it more versatile and more efficient. In nerve injury, CS scaffold material plays an important role in promoting nerve regeneration and repair,and mainly summarizes the application of CS in nerve tissue engineering.



Key wordsChitosan      Scaffold      Regeneration      Nerve tissue engineering     
Received: 19 October 2018      Published: 12 July 2019
ZTFLH:  R318.08  
Corresponding Authors: Zhao-hui WEN     E-mail: wenzhaohui1968@163.com
Cite this article:

Hui-rong WU,Zhao-hui WEN. Application of Chitosan in Nerve Tissue Engineering. China Biotechnology, 2019, 39(6): 73-77.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20190610     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I6/73

[1]   Saravanan S, Vimalraj S, Thanikaivelan P , et al. A review on injectable chitosan/beta glycerophosphate hydrogels for bone tissue regeneration. International Journal of Biological Macromolecules, 2018,121:38-54.DOI: 10.1016/j.ijbiomac.2018.10.014.
doi: 10.1016/j.ijbiomac.2018.10.014
[2]   Martins A F, Facchi S P, Follmann H D , et al. Antimicrobial activity of chitosan derivatives containing N-quaternized moieties in its backbone: a review. International Journal of Molecular Sciences, 2014,15(11):20800-20832.
doi: 10.3390/ijms151120800
[3]   Kumaraswamy R V, Kumari S, Choudhary R C , et al. Engineered chitosan based nanomaterials: Bioactivities, mechanisms and perspectives in plant protection and growth. International Journal of Biological Macromolecules, 2018,113:494-506.
doi: 10.1016/j.ijbiomac.2018.02.130
[4]   Cheung R C, Ng T B, Wong J H . Chitosan: An update on potential biomedical and pharmaceutical applications. Marine Drugs, 2015,13(8):5156-5186.
doi: 10.3390/md13085156
[5]   Shapira Y, Tolmasov M, Nissan M , et al. Comparison of results between chitosan hollow tube and autologous nerve graft in reconstruction of peripheral nerve defect: An experimental study. Microsurgery, 2016,36(8):664-671.
doi: 10.1002/micr.v36.8
[6]   Shukla S K, Mishra A K, Arotiba O A . Chitosan-based nanomaterials: a state-of-the-art review. International Journal of Biological Macromolecules, 2013,59:46-58.
doi: 10.1016/j.ijbiomac.2013.04.043
[7]   Li Y, Yu Z, Men Y , et al. Laminin-chitosan-PLGA conduit co-transplanted with Schwann and neural stem cells to repair the injured recurrent laryngeal nerve. Experimental and Therapeutic Medicine, 2018,16(2):1250-1258.
[8]   Francesko A . Chitin, chitosan and derivatives for wound healing and tissue engineering.Advances in Biochemical Engineering/ Biotechnology, 2011,125:1-27.
[9]   Zou W J, Chen Y X, Zhang X C , et al. Cytocompatible chitosan based multi-network hydrogels with antimicrobial, cell anti-adhesive and mechanical properties. Carbohydr Polym, 2018,202:246-257.
doi: 10.1016/j.carbpol.2018.08.124
[10]   Gnavi S, Barwig C, Freier T , et al. The use of chitosan-based scaffolds to enhance regeneration in the nervous system. International Review of Neurobiology, 2013,109:1-62.
doi: 10.1016/B978-0-12-420045-6.00001-8
[11]   屈巍, 罗卓荆 . 高仿真壳聚糖支架修复神经缺损的有效性研究. 中国矫形外科杂志, 2010,18(5):421-425.
[11]   Qu W, Luo Z J . Efficacy of high-simulation chitosan scaffold for repairing nerve defects. Chinese Journal of Orthopaedics, 2010,18(5):421-425.
[12]   Yamaguchi I, Itoh S, Suzuki M , et al. The chitosan prepared from crab tendons: II The chitosan/apatite composites and their application to nerve regeneration. Biomaterials, 2003,24(19):3285-3292.
doi: 10.1016/S0142-9612(03)00163-7
[13]   Matsumoto I, Kaneko M, Oda M . Repair of intra-thoracic autonomic nerves using chitosan tubes. Interactive Cardiovascular and Thoracic Surgery, 2010,10(4):498-501.
doi: 10.1510/icvts.2009.227744
[14]   Tanaka N, Matsumoto I, Suzuki M , et al. Chitosan tubes can restore the function of resected phrenic nerves. Interactive Cardiovascular and Thoracic Surgery, 2015,21(1):8-13.
doi: 10.1093/icvts/ivv091
[15]   Li G, Xiao Q, Zhang L , et al. Nerve growth factor loaded heparin/chitosan scaffolds for accelerating peripheral nerve regeneration. Carbohydrate Polymers, 2017,171(9):39-49.
doi: 10.1016/j.carbpol.2017.05.006
[16]   Yang Z, Duan H, Mo L , et al. The effect of the dosage of NT-3/chitosan carriers on the proliferation and differentiation of neural stem cells. Biomaterials, 2010,31(18):4846-4854.
doi: 10.1016/j.biomaterials.2010.02.015
[17]   Annabi N, Mithieux S M, Weiss A S , et al. Cross-linked open-pore elastic hydrogels based on tropoelastin, elastin and high pressure CO2. Biomaterials, 2010,31(7):1655-1665.
doi: 10.1016/j.biomaterials.2009.11.051
[18]   Ji C, Annabi N, Khademhosseini A , et al. Fabrication of porous chitosan scaffolds for soft tissue engineering using dense gas CO2. Acta Biomaterialia, 2011,7(4):1653-1664.
doi: 10.1016/j.actbio.2010.11.043
[19]   Gonzalez-Perez F, Cobianchi S, Heimann C , et al. Stabilization, rolling, and addition of other extracellular matrix proteins to collagen hydrogels improve regeneration in chitosan guides for long peripheral nerve gaps in rats. Neurosurgery, 2017,80(3):465-474.
doi: 10.1093/neuros/nyw068
[20]   Huang Y, Onyeri S, Siewe M , et al. In vitro characterization of chitosan-gelatin scaffolds for tissue engineering. Biomaterials, 2005,26(36):7616-7627.
doi: 10.1016/j.biomaterials.2005.05.036
[21]   Chávez-Delgado M E, Mora-Galindo J, Gómez-Pinedo U , et al. Facial nerve regeneration through progesterone-loaded chitosan prosthesis A preliminary report. Journal of Biomedical Materials Research, 2003,67(2):702-711.
[22]   Singh A, Shiekh P A, Das M , et al. Aligned chitosan-gelatin cryogel-filled polyurethane nerve guidance channel for neural tissue engineering: eabrication, characterization, and in vitro evaluation. Biomacromolecules, 2019,20(2):662-673.
doi: 10.1021/acs.biomac.8b01308
[23]   Gonçalves N P, Oliveira H, Pêgo A P . A novel nanoparticle delivery system for in vivo targeting of the sciatic nerve: impact on regeneration. Nanomedicine, 2012,7(8):1167-1180.
doi: 10.2217/nnm.11.188
[24]   Cao H, Liu T . The application of nanofibrous scaffolds in neural tissue engineering. Advanced Drug Delivery Reviews, 2009,61(12):1055-1064.
doi: 10.1016/j.addr.2009.07.009
[25]   Liu Y C, Nelson T, Chakroff J , et al. Comparison of polyglycolic acid, polycaprolactone, and collagen as scaffolds for the production of tissue engineered intestine. J Biomed Mater Res Part B Appl Biomater, 2019,107(3):750-760.
doi: 10.1002/jbm.b.v107.3
[26]   Prabhakaran M P, Venugopal J R, Chyan T T , et al. Electrospun biocomposite nanofibrous scaffolds for neural tissue engineering. Tissue Engineering, 2008,14(11):1787-1797.
doi: 10.1089/ten.tea.2007.0393
[27]   刘奔, 张彩顺, 高绪斌 , 等. 聚己内酯/壳聚糖神经导管复合骨髓间充质干细胞促进大鼠坐骨神经损伤修复的研究. 中国生物工程杂志, 2014,34(2):34-38.
doi: 10.13523/j.cb.20140206
[27]   Liu B, Zhang C S, Gao X B , et al. Study on the repair of rat sciatic nerve injury by polycaprolactone/chitosan nerve conduit combined with bone marrow mesenchymal stem cells. China Biotechnology, 2014,34(2):34-38.
doi: 10.13523/j.cb.20140206
[28]   Xie F, Li Q F, Gu B , et al. In vitro and in vivo evaluation of a biodegradable chitosan-PLA composite peripheral nerve guide conduit material. Microsurgery, 2008,28(6):471-479.
doi: 10.1002/micr.v28:6
[29]   Gu J, Hu W, Deng A , et al. Surgical repair of a 30mm long human median nerve defect in the distal forearm by implantation of a chitosan-PGA nerve guidance conduit. Journal of Tissue Engineering and Regenerative Medicine, 2012,6(2):163-168.
doi: 10.1002/term.v6.2
[30]   Cao H, Liu T . The application of nanofibrous scaffolds in neural tissue engineering. Advanced Drug Delivery Reviews, 2009,61(12):1055-1064.
doi: 10.1016/j.addr.2009.07.009
[31]   Simões M J, Amado S, Gärtner A , et al. Use of chitosan scaffolds for repairing rat sciatic nerve defects. Italian Journal of Anatomy and Embryology, 2010,115(3):190-210.
[32]   Ni P L, Bi H Y, Zhao G , et al. Electrospun preparation and biological properties in vitro of polyvinyl alcohol/sodium alginate/nano-hydroxyapatite composite fiber membrane. Colloids Surf B Biointerfaces, 2018,173:171-177.
[33]   Jiao H, Yao J, Yang Y , et al. Chitosan/polyglycolic acid nerve grafts for axon regeneration from prolonged axotomized neurons to chronically denervated segments. Biomaterials, 2009,30(28):5004-5018.
doi: 10.1016/j.biomaterials.2009.05.059
[34]   Wang X, Hu W, Cao Y , et al. Dog sciatic nerve regeneration across a 30mm defect bridged by a chitosan/PGA artificial nerve graft. Brain, 2005,128(Pt 8):1897-1910.
doi: 10.1093/brain/awh517
[35]   Zhang L, Webster T J , Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today, 2009,4:66-80.
doi: 10.1016/j.nantod.2008.10.014
[36]   Singh N, Chen J H, Koziol K K , et al. Chitin and carbon nanotube composites as biocompatible scaffolds for neuron growth. Nanoscale, 2016,8(15):8288-8299.
doi: 10.1039/C5NR06595J
[37]   Lee S J, Zhu W, Nowicki M , et al. 3D printing nano conductive multi-walled carbon nanotube scaffolds for nerve regeneration. Journal of Neural Engineering, 2018,15(1):016018.
doi: 10.1088/1741-2552/aa95a5
[38]   Zhou Z, Liu X, Wu W , et al. Effective nerve cell modulation by electrical stimulation of carbon nanotube embedded conductive polymeric scaffolds. Biomaterials Science, 2018,6(9):2375-2385.
doi: 10.1039/C8BM00553B
[39]   Hu H, Ni Y C, Montana V , et al. Chemically functionalized carbon nanotubes as substrates for neuronal growth. Nano Lett, 2004,4(3):507-511.
doi: 10.1021/nl035193d
[40]   Huang Y C, Hsu S H, Kuo W C , et al. Effects of laminin-coated carbon nanotube/chitosan fibers on guided neurite growth. Journal of Biomedical Materials Research, 2011,99(1):86-93.
[41]   Solìs M Y, Panella G, Fioravanti G , et al. Biocompatibility of composites based on chitosan, apatite, and graphene oxide for tissue applications. J Biomed Mater Res A, 2018,106(6):1585-1594.
doi: 10.1002/jbm.a.v106.6
[42]   Yamaguchi I, Itoh S, Suzuki M , et al. The chitosan/apatite composites and their application to nerve regeneration. Biomaterieals, 2003,24(19):3285-3292.
doi: 10.1016/S0142-9612(03)00163-7
[43]   Itoh S, Yamaguchi I, Suzuki M , et al. Hydroxyapatite coated tendon chitosan tubes with adsorbed laminin peptides facilitate nerve regeneration in vivo. Brain Res, 2003,993(1-2):111-123
doi: 10.1016/j.brainres.2003.09.003
[44]   Saderi N, Rajabi M, Akbari B , et al. Fabrication and characterization of gold nanoparticle-doped electrospun PCL/chitosan nanofibrous scaffolds for nerve tissue engineering. Journal of Materials Science: Materials in Medicine, 2018,29(9):134.
doi: 10.1007/s10856-018-6144-3
[1] YU Xing-ge,LIN Kai-li. The Application of Biomaterials Based on Natural Hydrogels in Bone Tissue Engineering[J]. China Biotechnology, 2020, 40(5): 69-77.
[2] WANG Yuan-dou,SU Feng,LI Su-ming. Research Progress of Photocrosslinked Hydrogel in Tissue Engineering[J]. China Biotechnology, 2020, 40(4): 91-96.
[3] Jian-xiu LI,Xian-rui CHEN,Xiao-ling CHEN,Yan-yan HUANG,Qi-wen MO,Neng-zhong XIE,Ri-bo HUANG. Construct Whole-cell Biocatalyst and Produce (S)-Acetoin via Synthetic Biology Strategy[J]. China Biotechnology, 2019, 39(4): 60-68.
[4] Gong CHENG,Si-ming JIAO,Li-shi REN,Cui FENG,Yu-guang DU. Preparation and Composition Analysis of Chitooligosaccharides with Low Degree of Deacetylation by Hydrolysis of Bacillus subtilis Chitosanase[J]. China Biotechnology, 2018, 38(9): 19-26.
[5] Yue ZHAO,Hao WU,Jian-jun QIAO. Research on the Regulatory Mechanisms of Bacterial Cell Wall Growth[J]. China Biotechnology, 2018, 38(8): 92-99.
[6] Ling WANG,Yang WU,Sheng ZHANG,Hao QI. Bioengineering Application of Ferritin[J]. China Biotechnology, 2018, 38(6): 77-85.
[7] Xi KANG,Ai-peng DENG,Shu-lin YANG. Research Progress of Chitosan Based Thermosensitive Hydrogels[J]. China Biotechnology, 2018, 38(5): 79-84.
[8] Si-teng DUAN,Guang-ran LI,Yi-yong MA,Yu-jia QIU,Yu LI,Wei WANG. Study on Physicochemical Properties and Biocompatibility of Injectable Chitosan-hyaluronic Acid Hydrogel Loaded with NGF[J]. China Biotechnology, 2018, 38(4): 70-77.
[9] HE Guan-rong,HE Bi-zhu,WU Sha-sha,SHI Jing-shan,CHEN Ji-shuang,LAN Si-ren. Establishment of an Efficient Regeneration System in Goodyera foliosa and Comprehensive Analysis of Functionally Regulated Genes Involved in Developmental Regulatory Pathways Based on Transcriptome Analysis[J]. China Biotechnology, 2018, 38(12): 57-64.
[10] XI Lai-shun,YUN Peng,WANG Yuan-dou,ZHANG Guan-hong,XING Quan-sheng,CHEN Yang-sheng,SU Feng. Application of Shape Memory Polymer in Tissue Engineering[J]. China Biotechnology, 2018, 38(12): 76-81.
[11] Xu-peng ZHAO,Xiao-peng ZHAO,Hao SHI,Xue-mei CHEN,Ting JIANG,Yan LIU. Establishment of High Frequency Regeneration via Leaf Explants of ‘Guichang’ Kiwifruit (Actinidia chinensis)[J]. China Biotechnology, 2018, 38(10): 48-54.
[12] Ting AN,Jing JI,Yu-rong WANG,Zhi-gang MA,Gang WANG,Qian LI,Dan YANG,Song-hao ZHANG. Analysis of the Transformation Efficiency and Induced Differentiation of Lilium brownii Scales[J]. China Biotechnology, 2018, 38(1): 25-31.
[13] XU Zhu, ZHUGE Qi-chuan, HUANG Li-jie. Advances in Stem Cell 3D Scaffolds[J]. China Biotechnology, 2017, 37(9): 112-117.
[14] ZHENG Jie, JIANG Chao, LI Xiao-kun, TIAN Hai-shan. The Progression of Fibroblast Growth Factor 6[J]. China Biotechnology, 2017, 37(4): 110-114.
[15] LI Da-wei, HE Jin, HE Feng-li, LIU Ya-li, DENG Xu-dong, YE Ya-jing, YIN Da-chuan. Advances in Application of Silk Fibroin/Chitosan Composite in Tissue Engineering[J]. China Biotechnology, 2017, 37(10): 111-117.