Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (11): 59-65    DOI: 10.13523/j.cb.20181108
    
The Progress of CRISPR/Cas System Used As Antimicrobials
Jia-wei ZENG,Guo-feng HOU,Ji-ping ZHENG,Nou YANG,Ji-feng ZENG,Gui-ying GUO()
Hainan University,Tropical Agriculture and Forestry College,Haikou 570228,China
Download: HTML   PDF(1040KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Antibiotics are used to arrest essential bacterial signaling and/or metabolic pathways,causing bacterial cell death.Overuse and misuse of antibiotics have led to dysbacteriosis and drug resistance.The application of CRISPR (clustered regularly interspaced short palindromic repeats)/Cas (CRISPR associated) systems provides a new method to kill the drug-resistant microbes specifically by designing programmable sequence-specific antimicrobials.Currently,the most efficient CRISPR/Cas systems are type I and type II as a novel antimicrobial tool in selective removal of bacterial pathogens.Bacteriophage has been developed as a delivery vehicle,but the membrane vesicles had more potential for transporting the CRISPR/Cas systems into the targeted resistant pathogen.



Key wordsBacterial drug-resistance      Selective removal      CRISPR/Cas      Delivery vehicles     
Received: 30 May 2018      Published: 06 December 2018
ZTFLH:  Q522  
Corresponding Authors: Gui-ying GUO     E-mail: 815827434@qq.com
Cite this article:

Jia-wei ZENG,Guo-feng HOU,Ji-ping ZHENG,Nou YANG,Ji-feng ZENG,Gui-ying GUO. The Progress of CRISPR/Cas System Used As Antimicrobials. China Biotechnology, 2018, 38(11): 59-65.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20181108     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I11/59

Fig.1 The Cas9 nuclease from S. pyogenes (in yellow) is targeted to genomic DNA by a sgRNA
Fig.2 Cascade’s complex structure (a) and Schematic diagram of cascade identifying the target DNA sequence (b)
Fig.3 The CRISPR/Cas system is integrated into the phagemid or phage genome for packaging and intracellular delivery (a) Phage anatomy (b) Forms of DNA encoding CRISPR antimicrobials
Fig.4 Membrane-vesicle (MV) mediated horizontal gene transfer
遗传物质
Genetic material
供体细胞
Donor cells
受体细胞
Recipient cells
参考文献
Reference
革兰氏阴性菌
Gram-negative bacteria
质粒DNA
Plasmid DNA
淋病奈瑟氏菌
Neisseria gonorrhoeae
淋病奈瑟氏菌
N. gonorrhoeae
[36]
质粒与噬菌体DNA
Plasmid and phage DNA
大肠杆菌
E. coli
大肠杆菌
E. coli
[37]
噬菌体DNA
Phage DNA
大肠杆菌
E. coli
沙门氏菌
Salmonella enterica
[37]
质粒DNA
Plasmid and
鲍曼不动杆菌
Acinetobacter baumannii
鲍曼不动杆菌
A. baumannii
[38]
质粒DNA
Plasmid and
不动杆菌
Acinetobacter baylyi
不动杆菌和大肠杆菌
A. baylyi and E. coli
[29]
基因组
Chromosomal DNA
牙龈卟啉单胞菌
Porphyromonas gingivalis
牙龈卟啉单胞菌
P. gingivalis
[39]
基因组与质粒DNA
Chromosomal DNA and plasmid DNA
嗜热栖热菌和栖热菌
Scotoductus T. thermophiles and Thermus scotoductus
嗜热栖热菌
T. thermophilus
[40]
革兰氏阳性菌
Gram-positive bacteria
基因组
Chromosomal DNA
瘤胃球菌和白色瘤胃球菌
Ruminococcus sp. and Ruminococcus albus
瘤胃球菌
Ruminococcus sp.
[41]
Table 1 Membrane vesicles mediated HGT in prokaryotes
[1]   O'Neill J . Antimicrobial resistance:tackling a crisis for the health and wealth of nations. The Review on Antimicrobial Resistance, 2014,20.
[2]   Sander J D, Joung J K . CRISPR-Cas systems for editing,regulating and targeting genomes. Nature Biotechnology, 2014,32(4):347.
doi: 10.1038/nbt.2842 pmid: 24584096
[3]   徐坤 . 源于嗜热链球菌的真核 CRISPR/Cas9 系统的建立,优化及其应用研究. 杨陵:西北农林科技大学, 2015.
[3]   Xu K . Establishment,optimization and application of Streptomyces thermophilus CRISPR/Cas9 system. Yangling:Northwest A&F University, 2015.
[4]   Staals R H J, Jackson S A, Biswas A , et al. Interference-driven spacer acquisition is dominant over naive and primed adaptation in a native CRISPR-Cas system. Nature Communications, 2016,7:12853.
doi: 10.1038/ncomms12853 pmid: 27694798
[5]   Koonin E V, Makarova K S, Zhang F . Diversity,classification and evolution of CRISPR-Cas systems. Current Opinion in Microbiology, 2017,37:67-78.
doi: 10.1016/j.mib.2017.05.008 pmid: 28605718
[6]   Makarova K S, Wolf Y I, Alkhnbashi O S , et al. An updated evolutionary classification of CRISPR-Cas systems. Nature Reviews Microbiology, 2015,13(11):722.
doi: 10.1038/nrmicro3569 pmid: 26411297
[7]   Jiang Y, Qian F, Yang J, Liu Y , et al. CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum. Nat Commun, 2017,8:15179.
doi: 10.1038/ncomms15179
[8]   Cui L, Bikard D . Consequences of Cas9 cleavage in the chromosome of Escherichia coli. Nucleic Acids Research, 2016,44(9):4243-4251.
doi: 10.1093/nar/gkw223 pmid: 27060147
[9]   Beloglazova N, Petit P, Flick R , et al. Structure and activity of the Cas3 HD nuclease MJ0384,an effector enzyme of the CRISPR interference. The EMBO Journal, 2011,30(22):4616-4627.
doi: 10.1038/emboj.2011.377 pmid: 22009198
[10]   Sinkunas T, Gasiunas G, Fremaux C , et al. Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system. The EMBO Journal, 2011,30(7):1335-1342.
doi: 10.1038/emboj.2011.41 pmid: 21343909
[11]   Caliando B J, Voigt C A . Targeted DNA degradation using a CRISPR device stably carried in the host genome. Nature Communications, 2015,6:6989.
doi: 10.1038/ncomms7989 pmid: 25988366
[12]   Westra E R, Swarts D C , Staals R H J,et al.The CRISPRs,they are a-changin:how prokaryotes generate adaptive immunity. Annual Review of Genetics, 2012,46:311-339.
doi: 10.1146/annurev-genet-110711-155447 pmid: 23145983
[13]   Gomaa A A, Klumpe H E, Luo M L , et al. Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems. mBio, 2014,5(1):e00928-13.
doi: 10.1128/mBio.00928-13 pmid: 24473129
[14]   Yosef I, Manor M, Kiro R , et al. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria. PNAS, 2015,112(23):7267-7272.
doi: 10.1073/pnas.1500107112 pmid: 26060300
[15]   Citorik R J, Mimee M, Lu T K . Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat Biotechnol 2014,32:1141-1145.
doi: 10.1038/nbt.3011 pmid: 25240928
[16]   Bikard D, Euler C W, Jiang W , et al. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat Biotechnol, 2014,32(11):1146-1150.
doi: 10.1038/nbt.3043 pmid: 25282355
[17]   Chen J, Novick R P . Phage-mediated intergeneric transfer of toxin genes. Science, 2009,323(5910):139-141.
doi: 10.1126/science.1164783 pmid: 19119236
[18]   Fagen J R, Collias D, Singh A K , et al. Advancing the design and delivery of CRISPR antimicrobials. Current Dpinon in Biomedical Engineering, 2017,4.
[19]   张文倩, 李华琴 . 噬菌粒载体在噬菌体展示中的应用和研究进展. 生物技术, 2014,24(1):96-100.
[19]   Zhang W Q, Li H Q . Application and progress of phagemid vector in phage display. Biotechnology, 2014,24(1):96-100.
[20]   Denyes J M, Dunne M, Steiner S , et al. Modified bacteriophage S16 long tail fiber proteins for rapid and specific immobilization and detection of Salmonella cells. Applied and Environmental Microbiology, 2017,83(12):e00277-17.
doi: 10.1128/AEM.00277-17 pmid: 28411223
[21]   Yen M, Cairns L S, Camilli A . A cocktail of three virulent bacteriophages prevents vibrio cholerae infection in animal models. Nat Commun, 2017,8:14187.
doi: 10.1038/ncomms14187 pmid: 28146150
[22]   Zaczek M, Łusiak-Szelachowska M, Jończyk-Matysiak E , et al. Antibody production in response to staphylococcal MS-1 phage cocktail in patients undergoing phage therapy. Frontiers in Microbiology, 2016,7:1681.
doi: 10.3389/fmicb.2016.01681 pmid: 27822205
[23]   Ando H, Lemire S, Pires D P , et al. Engineering modular viral scaffolds for targeted bacterial population editing. Cell Systems, 2015,1(3):187-196.
doi: 10.1016/j.cels.2015.08.013 pmid: 26973885
[24]   Yosef I, Goren M G, Globus R , et al. Extending the host range of bacteriophage particles for DNA transduction. Mol Cell, 2017,66(5):721-728.
doi: 10.1016/j.molcel.2017.04.025 pmid: 28552617
[25]   Park J Y, Moon B Y, Park J W , et al. Genetic engineering of a temperate phage-based delivery system for CRISPR/Cas9 antimicrobials against Staphylococcus aureus. Scientific Reports, 2017,7:44929.
doi: 10.1038/srep44929 pmid: 28322317
[26]   Brown L, Wolf J M, Prados-Rosales R , et al. Through the wall:extracellular vesicles in Gram-positive bacteria,mycobacteria and fungi. Nature Reviews Microbiology, 2015,13(10):620.
doi: 10.1038/nrmicro3480 pmid: 4860279
[27]   Domingues S, Nielsen K M . Membrane vesicles and horizontal gene transfer in prokaryotes. Current Opinion in Microbiology, 2017,38:16-21.
doi: 10.1016/j.mib.2017.03.012 pmid: 28441577
[28]   Gerritzen M J H, Martens D E, Wijffels R H , et al. Bioengineering bacterial outer membrane vesicles as vaccine platform. Biotechnology Advances, 2017,35(5):565-574.
doi: 10.1016/j.biotechadv.2017.05.003 pmid: 28522212
[29]   Fulsundar S, Harms K, Flaten G E , et al. Gene transfer potential of outer membrane vesicles of Acinetobacter baylyi and effects of stress on vesiculation. Applied and Environmental Microbiology, 2014,80(11):3469-3483.
doi: 10.1128/AEM.04248-13 pmid: 24657872
[30]   Schwechheimer C, Kuehn M J . Outer-membrane vesicles from Gram-negative bacteria:biogenesis and functions. Nature Reviews Microbiology, 2015,13(10):605.
doi: 10.1038/nrmicro3525 pmid: 26373371
[31]   舒聪妍, 王世杰, 高福兰 , 等. 大肠埃希菌外膜囊泡作为新型外源质粒递送载体的研究. 中国生物制品学杂志, 2017, 1-5.
[31]   Shu C Y, Wang S J, Gao F L , et al. E.coli outer membrane vesicles as a novel exogenous plasmid delivery vector. Chin J Biologicals, 2017, 1-5.
[32]   Andaloussi S E L, Mäger I, Breakefield X O , et al. Extracellular vesicles:biology and emerging therapeutic opportunities. Nature Reviews Drug Discovery, 2013,12(5):347.
doi: 10.1038/nrd3978 pmid: 23584393
[33]   李思迪, 侯信, 亓洪昭 , 等 .外泌体: 为高效药物投递策略提供天然的内源性纳米载体. 化学进展, 2016,28(Z2):353-362.
[33]   Li S D, Hou X, Qi H Z , et al. Exosomes:Provide naturally occurring endogenous nanocarriers for effective drug delivery strategies. Progress in Chemistry, 2016,28(Z2):353-362.
[34]   Kim S M, Yang Y, Oh S J , et al. Cancer-derived exosomes as a delivery platform of CRISPR/Cas9 confer cancer cell tropism-dependent targeting. Journal of Controlled Release, 2017,266:8-16.
doi: 10.1016/j.jconrel.2017.09.013 pmid: 28916446
[35]   侯国锋, 曾家伟, 羊熙春 , 等. 细菌膜泡与CRISPR联合消除无乳链球菌的研究.热带生物学报, 1-7.
[35]   Hou G F, Zeng J W, Yang X C , et al. Study on the combination of OMVs and CRISPR to kill GBS.Journal of Tropical Biology, 1-7.
[36]   Dorward D W, Garon C F, Judd R C . Export and intercellular transfer of DNA via membrane blebs of Neisseria gonorrhoeae. Journal of Bacteriology, 1989,171(5):2499-2505.
doi: 10.1128/jb.171.5.2499-2505.1989 pmid: 1056598
[37]   Yaron S, Kolling G L, Simon L , et al. Vesicle-mediated transfer of virulence genes from Escherichia coli O157:H7 to other enteric bacteria. Applied and Environmental Microbiology, 2000,66(10):4414-4420.
doi: 10.1128/AEM.66.10.4414-4420.2000 pmid: 11010892
[38]   Rumbo C, Fernández-Moreira E, Merino M , et al. Horizontal transfer of the OXA-24 carbapenemase gene via outer membrane vesicles:a new mechanism of dissemination of carbapenem resistance genes in Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 2011,55(7):3084-3090.
doi: 10.1128/AAC.00929-10
[39]   Ho M H, Chen C H, Goodwin J S , et al. Functional advantages of Porphyromonas gingivalis vesicles. PLoS One, 2015,10(4):e0123448.
doi: 10.1371/journal.pone.0123448 pmid: 4405273
[40]   Blesa A, Berenguer J . Contribution of vesicle-protected extracellular DNA to horizontal gene transfer in Thermus spp. Int Microbiol, 2015,18(3):177-187.
doi: 10.2436/20.1501.01.248 pmid: 27036745
[41]   Klieve A V, Yokoyama M T, Forster R J , et al. Naturally occurring DNA transfer system associated with membrane vesicles in cellulolytic Ruminococcus spp.of ruminal origin. Applied and Environmental Microbiology, 2005,71(8):4248-4253.
doi: 10.1128/AEM.71.8.4248-4253.2005 pmid: 16085810
[42]   Kang Y K, Kwon K, Ryu J S , et al. Nonviral genome editing based on a polymer-derivatized CRISPR nanocomplex for targeting bacterial pathogens and antibiotic resistance. Bioconjugate Chem 2017,28:957-967.
doi: 10.1021/acs.bioconjchem.6b00676 pmid: 28215090
[43]   Guo L, Xu K, Liu Z , et al. Assembling the Streptococcus thermophilus clustered regularly interspaced short palindromic repeats (CRISPR) array for multiplex DNA targeting. Analytical Biochemistry, 2015,478:131-133.
doi: 10.1016/j.ab.2015.02.028 pmid: 25748774
[1] WU Xiu-zhi,WANG Hong-jie,ZU Yao. Functional Study of hoxa1a Regulating Craniofacial Bone Development in Zebrafish[J]. China Biotechnology, 2021, 41(9): 20-26.
[2] BI Bo,ZHANG Yu,ZHAO Hui. Application of Yeast Hybrid System in Study of Off-target Rate of CRISPR/Cas9 Gene Editing System[J]. China Biotechnology, 2021, 41(6): 27-37.
[3] WANG Yan-mei,KOU Hang,MA Mei,SHEN Yu-yu,ZHAO Bao-ding,LU Fu-ping,LI Ming. CRISPR/Cas9-mediated Inactivation of the Pectinase Gene in Aspergillus niger and Evaluation of the Mutant Strain[J]. China Biotechnology, 2021, 41(5): 35-44.
[4] YANG Meng-bing,JIANG Yi-lin,ZHU Lei,AN Xue-li,WAN Xiang-yuan. CRISPR/Cas Plant Genome Editing Systems and Their Applications in Maize[J]. China Biotechnology, 2021, 41(12): 4-12.
[5] GUO Yang,CHEN Yan-juan,LIU Yi-chen,WANG Hai-jie,WANG Cheng-ji,WANG Jue,WAN Ying-han,ZHOU Yu,XI Jun,SHEN Ru-ling. Pd-1 Gene Knockout Mouse Model Construction and Preliminary Phenotype Verification[J]. China Biotechnology, 2021, 41(10): 1-11.
[6] GUO Yang,WAN Ying-han,WANG Jue,GONG Hui,ZHOU Yu,CI Lei,WAN Zhi-peng,SUN Rui-lin,FEI Jian,SHEN Ru-ling. Toll-like Receptor 4 (TLR4) Gene Knockout Mouse Model Construction and Preliminary Phenotypic Analysis[J]. China Biotechnology, 2020, 40(6): 1-9.
[7] HUANG Sheng, YAN Qi-tao, XIONG Shi-lin, PENG Yi-qi, ZHAO Rui. Construction of CHD5 Gene Overexpressing Lentiviral Vector Based on CRISPR/Cas9-SAM System and the Effect of CHD5 on Proliferation, Migration and Invasion in T24 Cells[J]. China Biotechnology, 2020, 40(3): 1-8.
[8] WANG Wei-dong,DU Jia-ru,ZHANG Yun-shang,FAN Jian-ming. The Application of CRISPR/Cas9 in the Treatment of Human Virus Infection-Related Diseases[J]. China Biotechnology, 2020, 40(12): 18-24.
[9] LEI Hai-ying,ZHAO Qing-song,BAI Feng-lin,SONG Hui-fang,WANG Zhi-jun. Identification of Developing-related Gene ZmCen Using CRISPR/Cas9 in Maize[J]. China Biotechnology, 2020, 40(12): 49-57.
[10] WANG Yue,MU Yan-shuang,LIU Zhong-hua. Progress of CRISPR/Cas Base Editing System[J]. China Biotechnology, 2020, 40(12): 58-66.
[11] WANG Zhi-min,BI Mei-yu,HE Jia-fu,Ren Bing-xu,LIU Dong-jun. Development of CRISPR/Cas9 System and Its Application in Animal Gene Editing[J]. China Biotechnology, 2020, 40(10): 43-50.
[12] Lu JIAN,Ying-hui HUANG,Tian-ya LIANG,Li-min WANG,Hong-tao MA,Ting ZHANG,Dan-yang LI,Ming-lian WANG. Generation of JAK2 Gene Knockout K562 Cell Line by CRISPR/Cas9 System[J]. China Biotechnology, 2019, 39(7): 39-47.
[13] Song-tao ZHOU,Yun CHEN,Xiao-hai GONG,Jian JIN,Hua-zhong LI. Using CRISPR/Cas9 Technology to Construct Human Serum Albumin CHO Stable Expression Cell Line[J]. China Biotechnology, 2019, 39(4): 52-59.
[14] WAN Ying-han,CI Lei,WANG Jue,GONG Hui,LI Jun,DONG Ru,SUN Rui-lin,FEI Jian,SHEN Ru-ling. Construction and Preliminary Phenotypic Verification of PD-L1 Knockout Mice[J]. China Biotechnology, 2019, 39(12): 42-49.
[15] Sai-bao LIU,Ya-fang LI,Hui WANG,Wei WANG,Duo-liang RAN,Hong-yan CHEN,Qing-wen MENG. Construction of Influenza Virus High-producing Cell Line MDCK-Tpl2 -/- with CRISPR / Cas9[J]. China Biotechnology, 2019, 39(1): 46-54.