Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2014, Vol. 34 Issue (7): 89-95    DOI: 10.13523/j.cb.20140714
    
Progress in the Biosynthesis and Metabolism of Glutathione
WANG Wei-wei1,2, Tang Liang2, ZHOU Wen-long2, YANG Yan2, GAO Bo1,2, ZHAO Yun-Feng1, WANG Wei2
1. College of Life Science, Qufu Normal University, Qufu 273165, China;
2. State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
Download: HTML   PDF(405KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Glutathione (γ-L-glutamyl-L-cysteinylglycine, GSH), a tripeptide composed of glutamate, cysteine and glycine, is the most abundant non-protein thiol compound widely distributed in living organisms. There are too many papers on biosynthesis of glutathione. Glutathione is mainly synthesized by the consecutive action of γ-glutamylcysteine synthetase (GSH I)and glutathione synthetase (GSH II), whose evolutionary history is more complex than anticipated. Many organisms without GSH I or GSH II were proved to have the other biosynthetic patheways used to produce glutathione, while they also have complex metabolic pathway. This review summarizes the advance of the biosynthetic pathways and metabolisms of glutathione and the strategies to improve the intracellular level of glutathione using genetic engineering.



Key wordsGlutathione      Biosynthesis      Genetic engineering     
Received: 15 April 2014      Published: 25 July 2014
ZTFLH:  Q814  
Cite this article:

WANG Wei-wei, Tang Liang, ZHOU Wen-long, YANG Yan, GAO Bo, ZHAO Yun-Feng, WANG Wei. Progress in the Biosynthesis and Metabolism of Glutathione. China Biotechnology, 2014, 34(7): 89-95.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20140714     OR     https://manu60.magtech.com.cn/biotech/Y2014/V34/I7/89


[1] Hopkins F G. On glutathione: a reinvestigation. J Biol Chem, 1929, 84(1): 269-320.

[2] Kendall E C, McKenzie B F, Mason H L. A study of glutathione. Its preparation in crystalline form and its identification. J Biol Chem, 1929, 84(2): 657-674.

[3] Kaplowitz N, Aw T Y, Ookhtens M. The regulation of hepatic glutathione. Annu Rev Pharmacol Toxicol, 1985, 25(1): 715-744.

[4] Carmel-Harel O, Storz G. Roles of the glutathione and thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress. Annu Rev Microbiol, 2000, 54(1): 439-461.

[5] Penninckx M J. An overview on glutathione in Saccharomyces versus non-conventional yeasts. FEMS Yeast Res, 2002, 2(3): 295-305.

[6] Meister A, Tate S S. Glutathione and related γ-glutamyl compounds: biosynthesis and utilization. Annu Rev Biochem, 1976, 45(1): 559-604.

[7] Meister A, Anderson M E. Glutathione. Annu Rev Biochem, 1983, 52(1): 711-760.

[8] Jones D P. Redefining oxidative stress. Antioxid Redox Signal, 2006, 8(9-10): 1865-1879.

[9] Bock K W, Lilienblum W, Fischer G, et al. The role of conjugation reactions in detoxication. Arch Toxicol, 1987, 60(1-3): 22-29.

[10] Ketterer B, Coles B, Meyer D J. The role of glutathione in detoxication. Environ Health Perspect, 1983, 49: 59.

[11] Orlowski M, Meister A. The γ-glutamyl cycle: a possible transport system for amino acids. Proc Natl Acad Sci U S A, 1970, 67(3): 1248-1255.

[12] Pallardó F V, Markovic J, García J L, et al. Role of nuclear glutathione as a key regulator of cell proliferation. Mol Aspects Med, 2009, 30(1): 77-85.

[13] Hall A G. The role of glutathione in the regulation of apoptosis. Eur J Clin Invest, 1999, 29(3): 238-245.

[14] Liu R M, Gaston Pravia K A. Oxidative stress and glutathione in TGF-β-mediated fibrogenesis. Free Radic Biol Med, 2010, 48(1): 1-15.

[15] Forman H J, Fukuto J M, Torres M. Redox signaling: thiol chemistry defines which reactive oxygen and nitrogen species can act as second messengers. Am J Physiol Cell Physiol, 2004, 287(2): C246-256.

[16] Chen L, Patel R P, Teng X, et al. Mechanisms of cystic fibrosis transmembrane conductance regulator activation by S-nitrosoglutathione. J Biol Chem, 2006, 281(14): 9190-9199.

[17] Dröge W, Breitkreutz R. Glutathione and immune function. Proc Nutr Soc, 2000, 59(4): 595-600.

[18] Hopkins F G. On an autoxidisable constituent of the cell. Biochem J, 1921, 15(2): 286-305.

[19] Harington C R, Mead T H. Synthesis of glutathione. Biochem J, 1935, 29(7): 1602-1611.

[20] Soomets U, Zilmer M, Langel U. Manual solid-phase synthesis of glutathione analogs: a laboratory-based short course. Methods Mol Biol, 2005, 298:241-257.

[21] Bloch K. The synthesis of glutathione in isolated liver. J Biol Chem, 1949, 179(3): 1245-1254.

[22] Richman PG, Meister A. Regulation of gamma-glutamyl-cysteine synthetase by nonallosteric feedback inhibition by glutathione. J Biol Chem, 1975, 250(4): 1422-1426.

[23] Copley S D, Dhillon J K. Lateral gene transfer and parallel evolution in the history of glutathione biosynthesis genes. Genome Biol, 2002, 3(5): 1-16.

[24] Meister A. Glutathione metabolism and its selective modification. J Biol Chem, 1988, 263(33): 17205-17208.

[25] Yan N, Meister A. Amino acid sequence of rat kidney gamma-glutamylcysteine synthetase. J Biol Chem, 1990, 265(3): 1588-1593.

[26] Huang C S, Anderson M E, Meister A. Amino acid sequence and function of the light subunit of rat kidney gamma-glutamylcysteine synthetase. J Biol Chem, 1993, 268(27): 20578-20583.

[27] Gipp J J, Chang C, Timothy M R. Cloning and nucleotide sequence of a full-length cDNA for human liver γ-glutamylcysteine synthetase. Biochem Biophys Res Commun, 1992, 185(1): 29-35.

[28] Gipp J J, Bailey H H, Mulcahy R T. Cloning and sequencing of the cDNA for the light subunit of human liver γ-Glutamylcysteine synthetase and relative RNA levels for heavy and light subunits in human normal tissues. Biochem Biophys Res Commun, 1995, 206(2): 584-589.

[29] Seelig G F, Simondsen R P, Meister A. Reversible dissociation of gamma-glutamylcysteine synthetase into two subunits. J Biol Chem, 1984, 259(15): 9345-9347.

[30] Huang C S, Chang L S, Anderson M E, et al. Catalytic and regulatory properties of the heavy subunit of rat kidney gamma-glutamylcysteine synthetase. J Biol Chem, 1993, 268(26): 19675-19680.

[31] Dalton T P, Chen Y, Schneider S N, et al. Genetically altered mice to evaluate glutathione homeostasis in health and disease. Free Radic Biol Med, 2004, 37(10): 1511-1526.

[32] Newton G L, Arnold K, Price M S, et al. Distribution of thiols in microorganisms: mycothiol is a major thiol in most actinomycetes. J Bacteriol, 1996, 178(7): 1990-1995.

[33] Gopal S, Borovok I, Ofer A, et al. A multidomain fusion protein in Listeria monocytogenes catalyzes the two primary activities for glutathione biosynthesis. J Bacteriol, 2005, 187(11): 3839-3847.

[34] Janowiak B E, Griffith O W. Glutathione Synthesis in Streptococcus agalactiae one protein accounts for γ-glutamylcysteine synthetase and glutathione synthetase activities. J Biol Chem, 2005, 280(12): 11829-11839.

[35] Vergauwen B, De Vos D, Van Beeumen J J. Characterization of the bifunctional γ-glutamate-cysteine ligase/glutathione synthetase (GshF) of Pasteurella multocida. J Biol Chem, 2006, 281(7): 4380-4394.

[36] Veeravalli K, Boyd D, Iverson B L, et al. Laboratory evolution of glutathione biosynthesis reveals natural compensatory pathways. Nat Chem Biol, 2011, 7(2): 101-105.

[37] Spector D, Labarre J, Toledano M B. A Genetic Investigation of the Essential Role of Glutathione mutations in tne proline biosynthesis pathway are the only suppressors of glutathione auxotrophy in yeast. J Biol Chem, 2001, 276(10): 7011-7016.

[38] Lehmann C, Doseeva V, Pullalarevu S, et al. YbdK is a carboxylate-amine ligase with a γ-glutamyl: Cysteine ligase activity: Crystal structure and enzymatic assays. Proteins, 2004, 56(2): 376-383.

[39] Johnson T, Newton G L, Fahey R C, et al. Unusual production of glutathione in Actinobacteria. Arch Microbiol, 2009, 191(1): 89-93.

[40] Elskens MT, Jaspers CJ, Penninckx MJ. Glutathione as an endogenous sulphur source in the yeast Saccharomyces cerevisiae. J Gen Microbiol, 1991, 137(3):637-644.

[41] Ganguli D, Kumar C, Bachhawat A K. The alternative pathway of glutathione degradation is mediated by a novel protein complex involving three new genes in Saccharomyces cerevisiae. Genetics, 2007, 175(3): 1137-1151.

[42] Wellner V P, Sekura R, Meister A, et al. Glutathione synthetase deficiency, an inborn error of metabolism involving the γ-glutamyl cycle in patients with 5-oxoprolinuria (pyroglutamic aciduria). Proc Natl Acad Sci USA, 1974, 71(6): 2505-2509.

[43] Jaspers C J, Gigot D, Penninckx M J. Pathways of glutathione degradation in the yeast Saccharomyces cerevisiae. Phytochemistry, 1985, 24(4): 703-707.

[44] Breslow E, Meister A. The amino acid sequence of rat kidney 5-oxo-L-prolinase determined by cDNA cloning. J Biol Chem, 1996, 271(50): 32293-32300.

[45] Li Y, Wei G, Chen J. Glutathione: a review on biotechnological production. Appl Microbiol Biotechnol, 2004, 66(3): 233-242.

[46] Liao X Y, Shen W, Chen J, et al. Improved glutathione production by gene expression in Escherichia coli. Lett Appl Microbiol, 2006, 43(2): 211-214.

[47] Fei L, Wang Y, Chen S. Improved glutathione production by gene expression in Pichia pastoris. Bioproc Biosyst Eng, 2009, 32(6): 729-735.

[48] Kiriyama K, Hara K Y, Kondo A. Extracellular glutathione fermentation using engineered Saccharomyces cerevisiae expressing a novel glutathione exporter. Appl Microbiol Biot, 2012, 96(4): 1021-1027.

[49] Fan X, He X, Guo X, et al. Increasing glutathione formation by functional expression of the γ-glutamylcysteine synthetase gene in Saccharomyces cerevisiae. Biotechnol Lett, 2004, 26(5): 415-417.

[50] Murata K, Kimura A. Cloning of a gene responsible for the biosynthesis of glutathione in Escherichia coli B. Appl Environ Microb, 1982, 44(6): 1444-1448.

[51] Gushima H, Miya T, Murata K, et al. Construction of glutathione-producing strains of Escherichia coli B by recombinant DNA techniques. J Appl Biochem, 1982, 5(1-2): 43-52.

[52] Li W, Li Z, Yang J, et al. Production of glutathione using a bifunctional enzyme encoded by gshF from Streptococcus thermophilus expressed in Escherichia coli. J biotechnol, 2011, 154(4): 261-268.

[53] Ge S, Zhu T, Li Y. Expression of Bacterial GshF in Pichia pastoris for Glutathione Production. Appl Environ Microb, 2012, 78(15): 5435-5439.

[54] Li Y, Hugenholtz J, Sybesma W, et al. Using Lactococcus lactis for glutathione overproduction. Appl Microbiol Biot, 2005, 67(1): 83-90.

[55] Alfafara C G, Kanda A, Shioi T, et al. Effect of amino acids on glutathione production by Saccharomyces cerevisiae. Appl Microbiol Biot, 1992, 36(4): 538-540.

[56] Wen S, Zhang T, Tan T. Utilization of amino acids to enhance glutathione production in Saccharomyces cerevisiae. Enzyme Microb Tech, 2004, 35(6): 501-507.

[57] Gutiérrez-Alcalá G, Gotor C, Meyer A J, et al. Glutathione biosynthesis in Arabidopsis trichome cells. Proc Natl Acad Sci U S A, 2000, 97(20): 11108-11113.

[58] Ask M, Mapelli V, Höck H, et al. Engineering glutathione biosynthesis of Saccharomyces cerevisiae increases robustness to inhibitors in pretreated lignocellulosic materials. Microb Cell Fact, 2013, 12(87).

[59] Suzuki T, Yokoyama A, Tsuji T, et al. Identification and characterization of genes involved in glutathione production in yeast. J Biosci Bioeng, 2011, 112(2): 107-113.

[60] Hara K Y, Kiriyama K, Inagaki A, et al. Improvement of glutathione production by metabolic engineering the sulfate assimilation pathway of Saccharomyces cerevisiae. Appl Microb Biot, 2012, 94(5): 1313-1319.

[61] Ballatori N, Hammond C L, Cunningham J B, et al. Molecular mechanisms of reduced glutathione transport: role of the MRP/CFTR/ABCC and OATP/SLC21A families of membrane proteins. Toxicol Appl Pharm, 2005, 204(3): 238-255.

[1] ZHANG Heng,LIU Hui-yan,PAN Lin,WANG Hong-yan,LI Xiao-fang,WANG Tong,FANG Hai-tian. Research Strategy for Biosynthesis of Gamma Aminobutyric Acid[J]. China Biotechnology, 2021, 41(8): 110-119.
[2] LI Bing,ZHANG Chuan-bo,SONG Kai,LU Wen-yu. Research Progress in Biosynthesis of Rare Ginsenosides[J]. China Biotechnology, 2021, 41(6): 71-88.
[3] MIAO Yi-nan,LI Jing-zhi,WANG Shuai,LI Chun,WANG Ying. Research Progress of Key Enzymes in Terpene Biosynthesis[J]. China Biotechnology, 2021, 41(6): 60-70.
[4] ZHAI Jun-ye,CHENG Xu,SUN Ze-min,LI Chun,LV Bo. Current Advances in Biosynthesis of Acteoside[J]. China Biotechnology, 2021, 41(5): 94-104.
[5] WANG Guang-lu, WANG Meng-yuan, ZHOU Yi-fei, MA Ke, ZHANG Fan, YANG Xue-peng. Research Progress in Pyrrologuinoline Quinone Biosynthesis[J]. China Biotechnology, 2021, 41(1): 103-113.
[6] GUO Er-peng, ZHANG Jian-zhi, SI Tong. Recent Advances in the High-throughput Engineering of Lanthipeptides[J]. China Biotechnology, 2021, 41(1): 30-41.
[7] LIU Xiao-chen, FAN Dai-di, YANG Fan, WU Zhan-sheng. Advances in Microbial Production of Ginsenoside and Its Derivatives[J]. China Biotechnology, 2021, 41(1): 80-93.
[8] DUAN Hai-rong,WEI Sai-jin,LI Xun-hang. Advances in Rhamnolipid Biosynthesis by Pseudomonas aeruginosa Research[J]. China Biotechnology, 2020, 40(9): 43-51.
[9] DENG Ting-shan,WU Guo-gan,SUN Yu,TANG Xue-ming. Advances in Biosynthesis of Phenyllactic Acid[J]. China Biotechnology, 2020, 40(9): 62-68.
[10] YAN Wei-huan,HUANG Tong,HONG Jie-fang,MA Yuan-yuan. Recent Advances in Butanol Biosynthesis of Escherichia coli[J]. China Biotechnology, 2020, 40(9): 69-76.
[11] LIU Di,ZHANG Hong-chun. Advances in Genetically Engineered Animal Models of Chronic Obstructive Pulmonary Disease[J]. China Biotechnology, 2020, 40(4): 59-68.
[12] CHEN Chun-lin,QIN Song,SONG Wan-lin,LIU Zhi-dan,LIU Zheng-yi. Progress on Biological Preparation of Alginate Oligosaccharides[J]. China Biotechnology, 2020, 40(10): 85-95.
[13] Meng-ying OU,Xiao-zheng WANG,Shuang-jun LIN,Tong-wei GUAN,Yi-jin LIN. A Review of Studies on Streptonigrin[J]. China Biotechnology, 2019, 39(7): 100-107.
[14] Shuo XU,Wen-yu LU. Progress of Heterologous Biosynthesis of Terpenoids in Engineered Corynebacterium glutamicum[J]. China Biotechnology, 2019, 39(6): 91-96.
[15] Shu-xia MA,Ling ZHANG,Jin-fei YAN,Song YOU. Study on the Synthesis of Polyunsaturated Fatty Acids by FattyAcid Synthase Pathway of Schizochytrium sp.[J]. China Biotechnology, 2018, 38(9): 27-34.