Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (9): 27-34    DOI: 10.13523/j.cb.20180904
Orginal Article     
Study on the Synthesis of Polyunsaturated Fatty Acids by FattyAcid Synthase Pathway of Schizochytrium sp.
Shu-xia MA1,3,Ling ZHANG2,Jin-fei YAN1,**(),Song YOU3
1 The Institute of Seawater Desalination and Comprehensive Utilization, Tianjin 300192, China
2 Children’s Hospital, Capital Institute of Pediatrics,Beijing 100020,China;
3 Shenyang Pharmaceutical University, Shenyang 110016, China
Download: HTML   PDF(1563KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

As an excellent species for the production of DHA, Schizochytrium sp. has two distinct pathways for producing DHA, fatty acid synthase pathway and polyketide synthase pathway, of which fatty acid synthase pathway played limited role in the DHA synthesis process due to its low activity of one or more of the enzymes, resulted in its only responsible for some short chain fatty acid synthesis. In order to enhance the ability of fatty acid synthase pathway for producing DHA in Schizochytrium sp. to improve the DHA content of its oil, the exogenous △12-desaturase expression plasmid with screening markers for Schizochytrium sp.ATCC20888 from the brown algae was constructed, then Schizochytrium sp. were transformed through electroporation. After long-term screening, two positive transformants were obtained by DNA and RNA identification. Their initial biomass measurements were 11.14% and 4.12% higher than the wild strains while the DHA content in oils and fats were 19.50% and 14.65% higher than the wild strains.



Key wordsGenetic engineering      Fatty acid synthase pathway      Schizochytrium sp.      DHA     
Received: 09 April 2018      Published: 12 October 2018
Corresponding Authors: Jin-fei YAN     E-mail: jinfei_yan@qq.com
Cite this article:

Shu-xia MA,Ling ZHANG,Jin-fei YAN,Song YOU. Study on the Synthesis of Polyunsaturated Fatty Acids by FattyAcid Synthase Pathway of Schizochytrium sp.. China Biotechnology, 2018, 38(9): 27-34.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20180904     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I9/27

Fig.1 Expression vector of pBlu2SKP-Pht△12
Fig.2 Construction of plasmid pBlu2SKP-Pht△12-1UP: Fragment of Upoly-PET; NCR: Fragment of neo-CYC-RB18S; UPNCR: Fragment of Upoly-PET-neo-CYC-RB18S; QUPNCR: Fragment of Upoly-PET-neo-CYC-RB18S after digestion of Spe I, BamH I; PSKII: Plasmid of pBluescript II SK (+); QPSKII: Plasmid of pBluescript II SK (+) after digestion of Spe I, BamH I; M:DL5000
Fig.3 Construction of plasmid pBlu2SKP-Pht△12-2LU: Fragment of LB18S-Ubi; QLU: Fragment of LB18S-Ubi after digestion of Sac I, Not I; P-1: Plasmid of pBlu2SKP-Pht△12-1; QP-1: Plasmid of pBlu2SKP-Pht△12-1 after digestion of Sac I, Not I; M:DL5000
Fig.4 Construction of plasmid pBlu2SKP-Pht△12Qpht12:Fragment of LB18S-Ubi after digestion of Spe I, Not I; P-2: Plasmid of pBlu2SKP-Pht△12-2; QP-2: Plasmid of pBlu2SKP-Pht△12-1 after digestion of Spe I, Not I;P-3: Plasmid pBlu2SKP-Pht△12; QP-3: Plasmid pBlu2SKP-Pht△12 after digestion of Xmn I; M:DL5000
Fig.5 Experimental results of resistance screening
Fig.6 DNA level screening of transformantsThe positive bands on 1.2kb are fragments of functional gene pht12 amplified by primer Jh-F/R
Fig.7 RT-PCR results of the transformantsH: The fragment amplified by primer Jh-F/R, a part of the functional gene pht12
生物量干重g/L
组一 组二 组三 平均重量
转化株1 8.13 7.97 7.93 8.01
转化株2 7.28 7.32 7.87 7.49
野生株 7.12 7.18 7.28 7.19
Table 1 Biomass comparison between the wild and thetransformants
Fig.8 Gas chromatograms of the transformants and the wild
油脂成分 转化株1(%) 转化株2(%) 野生株(%)
棕榈酸(C16:0) 22.027 20 19.789 47 26.702 99
硬脂酸(C18:0) 0.821 23 0.905 67 1.131 69
反油酸(C18:1(9)) 0.376 45 0.4312 7 0.747 75
亚油酸(C18:2(9,12)) 1.363 18 1.782 81 0.818 34
α-亚麻酸(C18:3n3) 0.113 95 0.121 57 0.1058 9
EPA (C20:5n3) 0.418 27 0.338 02 0.449 7
DHA(C22:6(DHA)) 44.340 88 42.540 43 37.104 51
Table 2 Percentage content of fatty acids in the oil of the transformants and the wild
Fig.9 Polyunsaturated fatty acidssynthesisof FAS pathway[5]
[1]   曹万新, 孟橘, 田玉霞 . DHA的生理功能及应用研究进展. 中国油脂, 2011,36(3):1-4.
[1]   Cao W X, Meng J, Tian Y X . Research advance in application and physiological functions of DHA. China Oils and Fats, 2011,36(3):1-4.
[2]   陈殊贤, 郑晓辉 . 微藻油和鱼油中DHA的特性及应用研究进展. 食品科学, 2013,34(21):439-444.
[2]   Chen S X, Zheng X H . Research progress in characteristics and applications of DHA in microalga oil and fish oil. Food Science, 2013,34(21):439-444.
[3]   Ashford A, Barclay W R, Weaver C A , et al. Electron microscopy may reveal structure of docosahexaenoic acid-rich oil with in Schizochytrium sp. Lipids, 2000,35(12):1377-1386.
doi: 10.1007/s11745-000-0655-2
[4]   Qiu X . Biosynthesis of docosahexaenoic acid (DHA, 22:6-4, 7,10,13,16,19): two distinct pathways. Prostaglandins Leukot Essent Fatty Acids, 2003,68(2):181-186.
doi: 10.1016/S0952-3278(02)00268-5
[5]   Ratledge C . Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie, 2004,86(11):807-815.
doi: 10.1016/j.biochi.2004.09.017
[6]   Hauvermale A, Kuner J, Rosenzweig B D , et al. Fatty acid production in Schizochytrium sp.: Involvement of a polyunsaturated fatty acid synthase and a type I fatty acid synthase. Lipids, 2006,41(8):739-747.
doi: 10.1007/s11745-006-5025-6
[7]   Metz J G, Roessler P, Facciotti D , et al. Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science, 2001,293(5528):290-300.
doi: 10.1126/science.1059593
[8]   Lippmeier J C, Crawford K S, Owen C B , et al. Characterization of both polyunsaturated fatty acid biosynthetic pathways in Schizochytrium sp. Lipids, 2009,44(7):621-630.
doi: 10.1007/s11745-009-3311-9
[9]   Song X, Tan Y, Liu Y , et al. Different impacts of short-chain fatty acids on saturated and polyunsaturated fatty acid biosynthesis in Aurantiochytrium sp. SD116. Journal of Agricultural & Food Chemistry, 2013,61(41):9876-9881.
[10]   Nagano N, Sakaguchi K, Taoka Y , et al. Detection of genes involved in fatty acid elongation and desaturation in thraustochytrid marine eukaryotes. Journal of Oleo Science, 2011,60(9):475-481.
doi: 10.5650/jos.60.475
[11]   Re L, Zhuang X, Chen S , et al. Introduction of ω-3 desaturase obviously changed the fatty acid profile and sterol content of Schizochytrium sp. Journal of Agricultural & Food Chemistry, 2015,63(44):9770-9776.
[12]   闫晋飞, 杨玉莹, 马淑霞 . 微藻基因工程概述. 生物学通报, 2017,52(4):1-5.
[12]   Yan J F, Yang Y Y, Ma S X . Overview of microalgae gene engineering. Bulletin of Biology, 2017,52(4):1-5.
[13]   Yan J, Cheng R, Lin X , et al. Overexpression of acetyl-CoA synthetase increased the biomass and fatty acid proportion in microalga Schizochytrium. Applied Microbiology & Biotechnology, 2013,97(5):1933-1939.
[14]   Bligh E G, Dyer W J . A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry & Physiology, 1959,37(8):911-917.
[1] LIU Di,ZHANG Hong-chun. Advances in Genetically Engineered Animal Models of Chronic Obstructive Pulmonary Disease[J]. China Biotechnology, 2020, 40(4): 59-68.
[2] CHEN Chun-lin,QIN Song,SONG Wan-lin,LIU Zhi-dan,LIU Zheng-yi. Progress on Biological Preparation of Alginate Oligosaccharides[J]. China Biotechnology, 2020, 40(10): 85-95.
[3] Xue-ting HE,Min-hua ZHANG,Jie-fang HONG,Yuan-yuan MA. Research Progress on Butanol-Tolerant Strain and Tolerance Mechanism of Escherichia coli[J]. China Biotechnology, 2018, 38(9): 81-87.
[4] Suo-wei WU,Xiang-yuan WAN. Construction of Male-sterility System Using Biotechnology and Application in Crop Breeding and Hybrid Seed Production[J]. China Biotechnology, 2018, 38(1): 78-87.
[5] GAO Jiao-jiao, YANG Shu-lin. Advances in Optimization of Hyaluronic Acid Production by Genetic Engineering Technology[J]. China Biotechnology, 2017, 37(8): 72-77.
[6] WANG De-hua, MA Yi, HAN Lei, XIAO Xing, LI Yan-wei, DANG Shi-ying, FAN Zhi-yong, WEN Tao, HONG An. Preparation of Novel Recombinant PACAP Derivative MPL-2 and Its Effect on Anti-type 2 Diabetes Mellitus[J]. China Biotechnology, 2017, 37(5): 59-65.
[7] CHEN Jing, KANG Ci-ming, LUO Wen-xin. Advance in Research on Antibody Half-Life Related Engineering[J]. China Biotechnology, 2017, 37(5): 87-96.
[8] GAN Chun-yang, LIU Ya, LUO Ying-ying, ZHANG Wen-lu, HUANG Ai-long, CAI Xue-fei, HU Jie-li. A Cloning Strategy Suitable for DNA Modification by Fragment Scanning[J]. China Biotechnology, 2016, 36(8): 55-63.
[9] LIU Ting-ting, LIANG Zi-qiang, LIANG Shi-ke, GUO Ji-xing, WANG Fang-hai. Research Advances of Producing Spider Silk by Biotechnology[J]. China Biotechnology, 2016, 36(5): 132-137.
[10] FANG Shi-xiong, MA Yi, SHEN Shu-tao, ZHAO Shao-jun, HONG An. Efficient Preparation of TNFα Derivatives TRSP10 and Preliminary Study of Its Inhibitory Effect on Prostate Cancer DU145 Cells[J]. China Biotechnology, 2015, 35(4): 11-16.
[11] WU Meng, LIU Zuo-hua, LIN Bao-zhong, LAN Guo-cheng, ZOU Xian-gang, GE Liang-peng. Recent Progress in Transgenic Pigs[J]. China Biotechnology, 2015, 35(3): 92-98.
[12] JIANG Yan-chao, JIANG Shi-yun, FU Feng-ming, HUANG Kai, KANG Xing-xin, XU Dan. Advance in Research on HA Biosynthesis and Gene Engineering[J]. China Biotechnology, 2015, 35(1): 104-110.
[13] ZHAO Guo-ling, TAO Xin-yi, WANG Feng-qing, WEI Dong-zhi. The Construction and Application of EchDA Genetic Engineering Bacteria[J]. China Biotechnology, 2015, 35(1): 67-74.
[14] WANG Wei-wei, Tang Liang, ZHOU Wen-long, YANG Yan, GAO Bo, ZHAO Yun-Feng, WANG Wei. Progress in the Biosynthesis and Metabolism of Glutathione[J]. China Biotechnology, 2014, 34(7): 89-95.
[15] LIN Jun-han, QIU Dong-feng, LIN Chen. Development in Breeding of Butanol Producing Strain[J]. China Biotechnology, 2014, 34(12): 118-128.