Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (10): 85-95    DOI: 10.13523/j.cb.2005049
    
Progress on Biological Preparation of Alginate Oligosaccharides
CHEN Chun-lin1,QIN Song2,SONG Wan-lin2,LIU Zhi-dan1,**(),LIU Zheng-yi2,**()
1 Laboratory of Environment-Enhancing Energy (E2E), College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
2 Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 17 Chunhui Road, Yantai 264003, China
Download: HTML   PDF(9635KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Degraded from alginate, alginate Oligosaccharides (AOS) is widely applies into various fields due to its physiological activities such as antioxidation, antitumor, bacteriostatic effect, immune regulation, promotion of cell growth and so on. The main preparation methods include physical degradation, chemical degradation and biological degradation, and brief comparison of these methods is summarized in this review. This paper mainly concludes biological preparation of AOS, including enzymatic hydrolysis by alginate lyase, microbial whole-cell fermentation and biosynthesis. Genetic engineering is of great significance in constructing genetically modified strain to improve the efficiency of biological method, so it is introduced in this review. In addition, the case of medium scale AOS biological preparation is also scientifically cited in this paper, and the future research directions of industrial production of AOS is prospected briefly. Realizing recommendations above will provide reference material for the future industrial preparation and applications of AOS.



Key wordsAlginate oligosaccharides      Physiological activities      Biological preparation      Genetic engineering      Large-scale preparation     
Received: 22 May 2020      Published: 10 November 2020
ZTFLH:  Q812  
Corresponding Authors: Zhi-dan LIU,Zheng-yi LIU     E-mail: zdliu@cau.edu.cn;zyliu@yic.ac.cn
Cite this article:

CHEN Chun-lin,QIN Song,SONG Wan-lin,LIU Zhi-dan,LIU Zheng-yi. Progress on Biological Preparation of Alginate Oligosaccharides. China Biotechnology, 2020, 40(10): 85-95.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2005049     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I10/85

生物活性 作用机理 制备方法 关键结构 参考文献
调节免疫力 诱导肿瘤坏死因子和白细胞介素分泌 酶解聚 不饱和双键 [14]
抑制动脉瘤复发 抑制miRNA表达以阻断Toll样受体介导的炎症反应 酶解聚 - [15]
降低血浆胆固醇 上调低密度脂蛋白受体水平和下调前蛋白转化酶枯草溶菌素-9 酶解聚 - [16]
促进人皮肤成纤维细胞
胶原蛋白的合成
抑制基质金属蛋白酶-1合成和增加金属蛋白酶的组织抑制剂合成 酶解聚 - [17]
抗氧化活性 有效清除自由基 酶解聚 共轭烯酸结构 [3,18]
抑菌 - H2O2降解 - [19-20]
神经保护活性 保护神经元样PC12细胞免受H2O2诱导的内质网和线粒体依赖性凋亡 H2O2降解 C1位的羧基 [21]
促进植物生长 提高激素含量和生长相关酶类的活力 酶解聚 - [22]
提高植物抗逆性 诱导合成植物保卫素和提高植株的体内抗逆酶类活力 酶解聚 - [23]
Table 1 Biological functions and potential applications of AOS
Fig.1 Preparation of alginate oligosaccharides by biological methods
来源 应用规模 生化特性 降解规律 参考文献
鲍鱼-消化液 0.2g底物 最适pH 7.1
最适温度42℃
PL-14
主要产物不饱和三糖和二糖(直接裂解Poly-M得到) [36]
黄杆菌Flavobacterium
multivorum
10mg底物 - Poly-G特异性产物平均分子3.742×103g/mol [5]
海泥-解淀粉芽孢杆菌 - 原始酶活2.22U/ml pH 稳定性好(6~11)
温度稳定性好(16~45℃)
2~7DP不饱和产物 [37]
棒状杆菌 1kg 底物 粗酶酶活为230U/ml 寡糖含量>80%主要为2-7DP不饱和产物 [38]
腐烂海藻-白蚁菌 10mg底物 优化后117.66 U/ml pH 稳定性好(3.5~9.0)
温度稳定性好(15~45℃)
双功能酶
主要为不饱和二糖、三糖产物
[34]
海洋细菌Serratia
marcescens
- pH 稳定性(8.0~10.0)内切酶
优化酶活2 742.5U/mg
Poly-M特异性2~5DP 不饱和产物 [39]
海洋细菌假单胞菌
(Pseudomonas sp.)
5g底物 - Poly-G特异性6 种寡糖产物(352~1 232Da) [40]
Table 2 Biochemical characteristics and degradation rules of alginate lyase from different sources
Fig.2 Construction of enzyme-producing engineering bacteria by genetic engineering technology
褐藻胶裂解酶基因来源 宿主细胞 生化特性 降解规律 参考文献
假交替单胞菌 大肠杆菌 最适p H 8.0
最适温度25 ℃
- [30]
黄杆菌-rFlAlyA 枯草芽孢杆菌 酶活高(最高2 550U/ml)
最适温度50℃
pH稳定性(4~11)
最适pH 7.5
内切酶
1~8DP
底物转化率高达 70.1%
Poly-M特异性
[46]
Pseudomonas mendocina 大肠杆菌 PL-5
内切酶
Poly-M特异性
存在单糖产物
2~5DP AOS
[47]
Flammeovirga sp. 大肠杆菌 温度稳定性(0~40℃) Poly-G偏好性2,近年来2~7 DP不饱和产物 [48]
Pedobacter hainanensis 大肠杆菌 PL-6
最适温度45℃
耐碱性好
内切酶
1~5 DP AOS
存在单糖产物
[42]
Pseudoalternomonas
carrageenovora
大肠杆菌 热稳定性(最适温度55 ℃)
pH稳定性
耐盐性
PL-6家族
AOS产物抗氧化活性高
2~3 DP 单糖
[49]
弧菌 大肠杆菌 PL-7
嗜盐性
最适30 ℃
NaCl激活
广泛底物特异性
[50]
假交替单胞菌 - 最适pH 7.4
最适温度40 ℃
广泛底物特异性
2~4 DP AOS
[31]
褐球固氮菌(Azotobacter
chroococcum)
毕赤酵母菌 最适pH8.5
最适温度40 ℃
温度稳定性(20~55℃)
pH稳定性(2~11)
Poly-M 特异性 [51]
Table 3 Biochemical characteristics and degradation of recombinant alginate lyase
方法 技术 操作条件 产物性质 优点 不足 参考文献
物理法 微波法 褐藻胶溶液预热
高温(约130℃)微波降解
过滤分离
冷冻干燥
1~10DP饱和古洛糖醛酸
平均分子量3.2kDa
清洁高效
耗时短
随温度和降解时延长副产物增多
产物分子量高
[6]
γ-辐照法 原料准备
混入降解敏化剂
辐照降解
分离收集
干燥
M/G比值逐渐
C==O双键结构[7]
简便高效
过程易控
成本低廉
引入其他基团
高剂量辐照产生褐变
[7,55]
化学法 光化学法 褐藻胶溶液
TiO2 催化紫外降解
产物分离收集
干燥
分子量108kDa(3h)
分子量70kDa(6h)
操作简单
化学结构不变
产物分子量高
效率低
机理不明
[56]
水热法 样品和催化剂
水热降解
分离收集
干燥
分子量大(>50kDa)[57]
形成羰基、羧基等官能团[58]
操作简单
成本低廉
副产物较多
高温可能破坏产物结构
[57,58]
亚临界热解 样品及催化剂装载
亚临界热解
过滤收集
干燥
产生甘露糖醛酸和古洛糖醛酸单体 环保无毒 高温可能破坏产物结构 [59]
酸解法 褐藻胶溶胀
强酸降解
高温反应
调pH(约2.85)收集
干燥
产生二糖-六糖系列寡糖[60]
饱和的非还原端残基[1]
产物种类丰富
成本较低
产物抗氧化
性能好
耗时长
部分降解
产物品质差
[60,61]
氧化降解法 褐藻胶溶胀
加氧化剂降解
乙醇沉淀
过滤除杂
烘干
还原端C-1位氧化为羧基
色泽洁白
工艺简单
产物性质稳定
反应相对剧烈
引入羧基
过程可控性低
[ 9]
方法 技术 操作条件 产物性质 优点 不足 参考文献
有机合成 关键底物(如1,6-脱氢-β-l-吡喃寡糖)制备
基团组装和连接
基团保护与去保护
产物分离
利用GM构建了寡糖片段(GMG, GMGGMG等) 精准合成 产量低
多重基团保护于去保护
[10]
生物法 酶促降解法 褐藻胶-磷酸盐溶液
加酶降解4~12h
水浴灭活
收集产物
干燥
共轭烯酸结构[62]
不饱和寡糖[41]
产物2~5 DP[31,32]
“三废”污染少
反应条件温和
副产物少
酶活低
酶分离纯化繁琐
酶的可复用性差
[5,38,62]
产酶微生物
全细胞发酵
微生物发酵液制备
酶解褐藻胶
乙醇沉淀
干燥
产物2~6DP
聚合度均一性较好
无需分离酶
副产物少
特异性强
微生物产酶的产量和性质不稳定
难以调控
[12]
工程菌发酵 工程菌发酵液制备
酶解褐藻胶
乙醇沉淀
干燥
发酵液中2~3DP AOS收率91.7% 产物均一性好
产物聚合度低
产率更高
成本较高
周期长
[43]
酶促合成 产酶微生物发酵液准备
加入合成底物发酵
产物分离
干燥
葡萄糖为底物产生AOS[45] 特异性强
精确控制区域
选择性和立体
选择性
成本较高
产率低
产物品种单一
[28,63]
Table 4 Comparison of different preparation methods of AOS
[1]   张明杰, 李恒, 蒋敏, 等. 低分子质量褐藻寡糖的高效酶法制备及其抗氧化活性评价. 海洋科学, 2016,40(12):62-70.
[1]   Zhang M J, Li H, Jiang M, et al. Efficient enzymatic preparation of low molecular weight alginate oligosaccharides and evaluation of their antioxidant activity. Marine Science, 2016,40(12):62-70.
[2]   Liu J, Yang S, Li X, et al. Alginate oligosaccharides: production, biological activities, and potential applications. Comprehensive Reviews in Food Science and Food Safety, 2019,18(6):1859-1881.
[3]   周绪霞, 徐鋆, 丁玉庭. 酶解制备褐藻胶寡糖及其产物的抗氧化活性分析. 食品与发酵工业, 2014,40(2):116-120.
[3]   Zhou X X, Xu Y, Ding Y T. Alginate-derived oligosaccharides product by alginate lyase and detection of the antioxidant activity. Food and Fermentation Industries, 2014,40(2):116-120.
[4]   Abdul Khalil H P S, Lai T K, Tye Y Y, et al. A review of extractions of seaweed hydrocolloids: properties and applications. Express Polymer Letters, 2018,12(4):296-317.
[5]   Boucelkha A, Petit E, Elboutachfaiti R, et al. Production of guluronate oligosaccharide of alginate from brown algae Stypocaulon scoparium using an alginate lyase. Journal of Applied Phycology, 2017,29(1):509-519.
[6]   Hu T, Li C X, Zhao X, et al. Preparation and characterization of guluronic acid oligosaccharides degraded by a rapid microwave irradiation method. Carbohydrate Research, 2013,373:53-58.
doi: 10.1016/j.carres.2013.03.014 pmid: 23584235
[7]   El-Mohdy H L. Abd. Radiation-induced degradation of sodium alginate and its plant growth promotion effect. Arabian Journal of Chemistry, 2017,10:S431-S438.
[8]   胡博旸, 聂莹, 孙路, 等. 酸降解法制备褐藻寡糖抗氧化性的研究. 食品工业科技, 2016,37(10):136-140.
[8]   Hu B Y, Nie Y, Sun L, et al. Study on the antioxidant activity of algal oligosaccharides prepared by acid degradation. Food Industry Science and Technology, 2016,37(10):136-140.
[9]   Yang Z, Li J P, Guan H S. Preparation and characterization of oligomannuronates from alginate degraded by hydrogen peroxide. Carbohydrate Polymers, 2004,58(2):115-121.
[10]   Chi F C, Kulkarni S S, Zulueta M M L., et al. Synthesis of alginate oligosaccharides containing L-guluronic acids. Chemistry - An Asian Journal, 2009,4(3):386-390.
[11]   邰宏博, 唐丽薇, 陈带娣, 等. 褐藻胶寡糖制备的研究进展. 生命科学研究, 2015,19(1):75-79.
[11]   Tai H B, Tang L W, Chen D D, et al. Research progress in the preparation of alginate oligosaccharides. Life Science Research, 2015,19(1):75-79.
[12]   Swift S M, Hudgens J W, Heselpoth R D, et al. Characterization of AlgMsp, an alginate lyase from Microbulbifer sp. 6532A. PLoS One, 2014,9(11):e112939.
doi: 10.1371/journal.pone.0112939 pmid: 25409178
[13]   孙哲朴, 刘辉, 顾思宇, 等. 褐藻胶寡糖制备和生物活性的研究进展. 食品工业, 2019,40(2):284-289.
[13]   Sun Z P, Liu H, Gu S Y, et al. Progress in preparation and biological activity of alginate oligosaccharides. The Food Industry, 2019,40(2):284-289.
[14]   Iwamotoa M, Kurachia M, Nakashimaa T, et al. Structure-activity relationship of alginate oligosaccharides in the induction of cytokine production from RAW264.7 cells. FEBS Letters, 2005,20(579):4423-4429.
[15]   Yang Y, Ma Z H, Yang G K, et al. Alginate oligosaccharide indirectly affects toll-like receptor signaling via the inhibition of microrna29b in aneurysm patients after endovascular aortic repair. Drug Design, Development and Therapy, 2017(2):2565-2579.
[16]   陈岩君, 窦文芳, 李恒, 等. 酶解褐藻寡糖的分离制备及其脂蛋白调节作用. 食品与发酵工业, 2018,44(12):30-35.
[16]   Yanjun Chen, Wenfang Dou, Heng Li, et al. Isolation and lipoprotein regulation activity of alginate oligosaccharides. Food and Fermentation Industries, 2018,44(12):30-35.
[17]   Park R M, Ahn J Y, Kim S Y, et al. Effect of alginate oligosaccharides on collagen expression in HS 27 human dermal fibroblasts. Toxicology and Environmental Health Sciences, 2019,11(4):327-334.
doi: 10.1007/s13530-019-0421-5
[18]   Falkeborg M, Cheong L Z, Carlo G, et al. Alginate oligosaccharides: enzymatic preparation and antioxidant property evaluation. Food Chemistry, 2014,164:185-194.
doi: 10.1016/j.foodchem.2014.05.053 pmid: 24996323
[19]   窦勇, 胡佩红. 褐藻胶寡糖制备及抑菌活性研究. 广东农业科学, 2009(12):261-264.
[19]   Dou Y, Hu P H. Preparation and antibacterial activity of alginate oligosaccharides. Guangdong Agricultural Science, 2009(12):261-264.
[20]   吴国锋, 秦燕霞, 王伟, 等. 褐藻胶寡糖制备及其对啤酒污染菌抑制的研究. 中国食品添加剂, 2015(06):130-133.
[20]   Wu G F, Qin Y X, Wang W, et al. Study on the preparation of alginate oligosaccharides and its inhibition on beer-contaminated bacteria. Chinese Food Additive, 2015(06):130-133.
[21]   Tusi S K, Khalaj L, Ashabi G, et al. Alginate oligosaccharide protects against endoplasmic reticulum- and mitochondrial-mediated apoptotic cell death and oxidative stress. Biomaterials, 2011,32(23):5438-5458.
doi: 10.1016/j.biomaterials.2011.04.024 pmid: 21543116
[22]   IWASAKI K, MATSUBARA Y. Purification of alginate oligosaccharides with root growth-promoting activity toward Lettuce. Bioscience, Biotechnology, and Biochemistry, 2000,64(5):1067-1070.
doi: 10.1271/bbb.64.1067 pmid: 10879484
[23]   刘瑞志. 褐藻寡糖促进植物生长与抗逆效应机理研究. 青岛: 中国海洋大学, 2009.
[23]   Liu R Z. Effects of alginate derived oligosaccharides on the growth promotion and stress resistance of plants. Qingdao, Ocean University of China, 2009.
[24]   Zhu B W, Ni F, Xiong Q, et al. Marine oligosaccharides originated from seaweeds: Source, preparation, structure, physiological activity and applications. Critical Reviews in Food Science and Nutrition, 2020: 1-15.
doi: 10.1080/10408398.2020.1836471 pmid: 33081490
[25]   国晶晶, 宋悦凡, 何云海, 等. 高效产褐藻胶裂解酶菌株产酶条件优化及降解寡糖结构分析. 大连海洋大学学报, 2019,34(2):252-259.
[25]   Guo J J, Song Y F, He Y H, et al. Optimization of enzyme production conditions and structure analysis of oligosaccharide degradation by highly efficient algin lyase strain. Journal of Dalian Ocean University, 2019,34(2):252-259.
[26]   汪梓旭, 郑志国, 鲍军时, 等. 褐藻胶裂解酶酶学性质及酶解马尾藻工艺的响应面优化. 中国酿造, 2020,39(2):103-107.
[26]   Wang Z X, Zheng Z G, Bao J S, et al. Enzymatic properties of algin lyase and response surface optimization of enzymatic hydrolysis of sargassum. China Breweding, 2020,39(2):103-107.
[27]   Doubet R S, Quatrano R S. Properties of alginate lyases from marine bacteria. Applied and Environmental Microbiology, 1984,47(4):699-703.
doi: 10.1128/AEM.47.4.699-703.1984 pmid: 16346509
[28]   南开大学. 门多萨假单胞菌NK-01用于生产褐藻寡糖的用途和方法:中国, ZL200910068579.4[2009-10-24]. http://g-wanfangdata-com-cn.vpn.cau.edu.cn:8118/details/detail.do?_type=patent&id=CN200910068579.4.
[28]   Nankai University. Application and method of Pseudomonas Mendoza NK-01 in the production of alginate oligosaccharides: China, ZL200910068579.4[2009-10-24]. http://g-wanfangdata-com-cn.vpn.cau.edu.cn:8118/details/detail.do?_type=patent&id=CN200910068579.4.
[29]   罗丹丹, 薛永常. 褐藻胶裂解酶的研究进展. 生物学杂志, 2016,33(6):95-98.
[29]   Lu D D, Xue Y C. Research progress of algin lyase. Journal of Biology, 2016,33(6):95-98.
[30]   吴晨烁, 李晓月, 秦明珍, 等. 海洋来源褐藻胶裂解酶及其基因B1SM的克隆和表达. 食品与发酵工业, 2019,45(3):77-82.
[30]   Wu C S, Li X Y, Qin M Z, et al. Cloning and expression of marine alginate lyase and its gene B1SM. Food and Fermentation Industry, 2019,45(3):77-82.
[31]   Matsushima R, Danno H, Uchida M, et al. Analysis of extracellular alginate lyase and its gene from a marine bacterial strain, Pseudoalteromonas atlantica AR06. Applied Microbiology and Biotechnology, 2010,86(2):567-576.
doi: 10.1007/s00253-009-2278-z pmid: 19844705
[32]   周敏, 冷凯良, 王致鹏, 等. 产褐藻胶裂解酶菌株的筛选及发酵条件优化. 青岛大学学报, 2019,32(1).
[32]   Zhou M, Leng K L, Wang Z P, et al. Screening of algin lyase-producing strains and optimization of fermentation conditions. Journal of Qingdao University, 2019,32(1).
[33]   Cao L X, Xie L J, Xue X L, et al. Purification and characterization of alginate lyase from Streptomyces species strain A5 isolated from banana rhizosphere. Journal of Agricultural and Food Chemistry, 2007,55(13):5113-5117.
doi: 10.1021/jf0704514 pmid: 17536832
[34]   李恒, 朱思婷, 刘旭梅, 等. 褐藻胶裂解酶产生菌的分离鉴定及产酶发酵优化. 中国生物工程杂志, 2014,34(9):94-101.
[34]   Li H, Zhu S T, Liu X M, et al. Identification of an alginate lyase producing strain Halomonas sp. WF6 and fermentation optimization. China Biotechnology, 2014,34(9):94-101.
[35]   Dou W F, Wei D, Li H, et al. Purification and characterisation of a bifunctional alginate lyase from novel Isoptericola halotolerans CGMCC 5336. Carbohydrate Polymers, 2013,98(2):1476-1482.
doi: 10.1016/j.carbpol.2013.07.050 pmid: 24053829
[36]   Suzuki H, Suzuki K, Inoue A, et al. A novel oligoalginate lyase from abalone, haliotis discus hannai, that releases disaccharide from alginate polymer in an exolytic manner. Carbohydrate Research, 2006,341(11):1809-1819.
doi: 10.1016/j.carres.2006.04.032 pmid: 16697989
[37]   黄惠琴, 宋鑫, 刘敏, 等. 产褐藻胶裂解酶芽胞杆菌的筛选鉴定及其降解效果评价. 微生物学杂志, 2018,38(6):54-58.
[37]   Huang H Q, Song X, Liu M, et al. Screening and identification of Bacillus producing algin lyase and evaluation of its degradation effect. Journal of Microbiology, 2018,38(6):54-58.
[38]   齐鲁工业大学. 一种高纯度褐藻寡糖的制备方法: 中国, ZL201810566502.9. 2018-10-23[2020-04-18]. http://g-wanfangdata-com-cn.vpn.cau.edu.cn:8118/details/detail.do?_type=patent&id=CN201810566502.9.
[38]   Qilu University of Technology. A method for preparing high purity brown algal oligosaccharides: China, ZL201810566502.9. 2018-10-23[2020-04-18]. http://g-wanfangdata-com-cn.vpn.cau.edu.cn:8118/details/detail.do?_type=patent&id=CN201810566502.9.
[39]   Zhu B W, Hu F, Yuan H, et al. Biochemical characterization and degradation pattern of a unique pH-stable poly-M-specific alginate lyase from newly isolated Serratia marcescens NJ-07. Marine Drugs, 2018,16(4):129.
[40]   Li L Y, Jiang X L, Guan H S, et al. Preparation, purification and characterization of alginate oligosaccharides degraded by alginate lyase from Pseudomonas sp. HZJ 216. Carbohydrate Research, 2011,346(6):794-800.
doi: 10.1016/j.carres.2011.01.023 pmid: 21371694
[41]   Vuoristo K S, Fredriksen L, Oftebro M, et al. Production, characterization, and application of an alginate lyase, AMOR-PL7A, from hot vents in the arctic mid-ocean ridge. Journal of Agricultural and Food Chemistry, 2019,67(10):2936-2945.
doi: 10.1021/acs.jafc.8b07190 pmid: 30781951
[42]   Li Q, Hu F, Wang M Y, et al. Elucidation of degradation pattern and immobilization of a novel alginate lyase for preparation of alginate oligosaccharides. International Journal of Biological Macromolecules, 2020,146:579-587.
doi: 10.1016/j.ijbiomac.2019.12.238 pmid: 31923492
[43]   Li S Y, Wang Z P, Wang L N, et al. Combined enzymatic hydrolysis and selective fermentation for green production of alginate oligosaccharides from Laminaria japonica. Bioresource Technology, 2019,281:84-89.
doi: 10.1016/j.biortech.2019.02.056 pmid: 30802819
[44]   Guo W B, Feng J, Geng W T, et al. Augmented production of alginate oligosaccharides by the Pseudomonas mendocina NK-01 mutant. Carbohydrate Research, 2012,352:109-116.
doi: 10.1016/j.carres.2012.02.024 pmid: 22429775
[45]   Fan X, Gong T, Wu Y B, et al. Enhanced synthesis of alginate oligosaccharides in Pseudomonas mendocina NK-01 by overexpressing MreB. 3 Biotech, 2019,9(9).
doi: 10.1007/s13205-019-1857-7 pmid: 31448186
[46]   江君, 刘军, 杨绍青, 等. 黄杆菌褐藻胶裂解酶的高效表达及其在褐藻寡糖制备中的应用. 食品科学, 2020.
doi: 10.1016/j.crfs.2020.02.002 pmid: 32914120
[46]   Jiang J, Liu J, Yang S Q, et al. High-level expression of Flavobacterium alginate lyase and its application in the preparation of algal oligosaccharides. Food Science, 2020.
doi: 10.1016/j.crfs.2020.02.002 pmid: 32914120
[47]   Zhu B Wei, Li S X, Tan H D, et al. Characterization of a new endo-type poly-M-specific alginate lyase from Pseudomonas sp. Biotechnology Letters, 2015,37(2):409-415.
doi: 10.1007/s10529-014-1685-0 pmid: 25257600
[48]   Han W J, Gu J Y, Cheng Y Y, et al. Novel alginate lyase (Aly5) from a polysaccharide-degrading marine bacterium, Flammeovirga sp. strain MY04: effects of module truncation on biochemical characteristics, alginate degradation patterns, and oligosaccharide-yielding properties. Applied and Environmental Microbiology, 2016,82(1):364-374.
doi: 10.1128/AEM.03022-15 pmid: 26519393
[49]   岳明. 海藻酸裂解酶和海藻糖合成酶基因工程研究, 北京:中国农业科学院, 2009.
[49]   Yue M. Studies on the genetic engineering of alginate lyase and trehalose syntehase, Beijing: Chinese Academy of Agricultural Sciences, 2009.
[50]   Uchimura K, Miyazaki M, Nogi Y, et al. Cloning and sequencing of alginate lyase genes from deep-sea strains of Vibrio and Agarivorans and characterization of a new vibrio enzyme. Marine Biotechnology, 2010,12(5):526-533.
doi: 10.1007/s10126-009-9237-7 pmid: 19941025
[51]   岳明, 丁宏标, 乔宇. 海藻酸裂解酶基因在毕赤酵母中的表达及重组酶性质的初步研究. 海洋学报, 2007(5): 29,154-160.
[51]   Yue M, Ding H B, Qiao Y. Expression of alginate lyase gene in Pichia pastoris and preliminary study on the properties of the recombinant enzyme. Acta Oceanologica Sinica, 2007(5): 29,154-160.
[52]   五洲丰农业科技有限公司. 一种褐藻胶裂解酶基因及其应用:中国,.ZL201910981063.2. 2020-01-03[2020-04-19]. http://g-wanfangdata-com-cn.vpn.cau.edu.cn:8118/details/detail.do?_type=patent&id=CN201910981063.2.
[52]   Wu zhou feng Agricultural Technology Co., Ltd. An alginate lyase gene and its application: China, ZL201910981063.2. 2020-01-03[2020-04-19]. http://g-wanfangdata-com-cn.vpn.cau.edu.cn:8118/details/detail.do?_type=patent&id=CN201910981063.2.
[53]   Rahman M M, Wang L, Inoue A, et al. cDNA cloning and bacterial expression of a PL-14 alginate lyase from a herbivorous marine snail Littorina brevicula. Carbohydrate Research, 2012,360:69-77.
doi: 10.1016/j.carres.2012.05.019 pmid: 22940178
[54]   Sim S, Baik K S, Park S Chan, et al. Characterization of alginate lyase gene using a metagenomic library constructed from the gut microflora of abalone. Journal of Industrial Microbiology & Biotechnology, 2012,39(4):585-593.
doi: 10.1007/s10295-011-1054-0 pmid: 22072436
[55]   Luan L Q, Ha V T T, Uyen N H P, et al. Preparation of oligoalginate plant growth promoter by γ irradiation of alginate solution containing hydrogen peroxide. Journal of Agricultural and Food Chemistry, 2012,60(7):1737-1741.
doi: 10.1021/jf204469p pmid: 22296105
[56]   Burana-osot J, Hosoyama S, Nagamoto Y, et al. Photolytic depolymerization of alginate. Carbohydrate Research, 2009,344(15):2023-2027.
doi: 10.1016/j.carres.2009.06.027 pmid: 19616772
[57]   Kelishomi Z H, Goliaei B, Mahdavi H, et al. Antioxidant activity of low molecular weight alginate produced by thermal treatment. Food Chemistry, 2016,196:897-902.
doi: 10.1016/j.foodchem.2015.09.091 pmid: 26593570
[58]   Aida T M, Yamagata T, Watanabe M, et al. Depolymerization of sodium alginate under hydrothermal conditions. Carbohydrate Polymers, 2010,80(1):296-302.
[59]   Jeon W, Ban C, Park G, et al. Catalytic hydrothermal conversion of macroalgae-derived alginate: effect of pH on production of furfural and valuable organic acids under subcritical water conditions. Journal of Molecular Catalysis A: Chemical, 2015,399:106-113.
[60]   张洪荣, 王长云, 刘斌, 等. 一种饱和褐藻胶寡糖的制备方法. 中国海洋药物, 2006(03):1-6.
[60]   Zhang H R, Wang C Y, Liu B, et al. The invention relates to a method for preparing saturated alginate oligosaccharides. Chinese Marine Medicine, 2006(03):1-6.
[61]   吴哲, 任丹丹, 梁馨元, 等. 褐藻胶寡糖的制备分离及生物活性. 食品安全质量检测学报, 2020,11(01):1-7.
[61]   Wu Z, Ren D D, Liang X Y, et al. Preparation, isolation and biological activity of alginate oligosaccharides. Journal of Food Safety and Quality Inspection, 2020,11(01):1-7.
[62]   Meillisa A, Woo H, Chun B. Production of monosaccharides and bio-active compounds derived from marine polysaccharides using subcritical water hydrolysis. Food Chemistry, 2015,171:70-77.
doi: 10.1016/j.foodchem.2014.08.097 pmid: 25308644
[63]   宁夏万胜生物工程有限公司. 一种从褐藻寡糖发酵液中分离褐藻寡糖的方法: 中国.ZL201110223290. 2. 2012-3-28. [2020-04-20]. http://g-wanfangdata-com-cn.vpn.cau.edu.cn:8118/details/detail.do?_type=patent&id=CN201110223290.2.
[63]   Ningxia Wansheng Biological Engineering Co., Ltd. A method for isolation of Alginate Oligosaccharides from fermentation broth of Alginate Oligosaccharides: Chinese. ZL201110223290. 2. 2012-3-28.[2020-04-20]. http://g-wanfangdata-com-cn.vpn.cau.edu.cn:8118/details/detail.do?_type=patent&id=CN201110223290.2.
[64]   欧昌荣. 褐藻胶寡糖的制备、分析及其应用研究. 青岛: 中国海洋大学, 2003.
[64]   Ou C R, Studies on the preparation,analysis and bioactivities of oligosaccharides from alginate. Qingdao: Ocean University of China, 2003.
[65]   宁波大学. 褐藻胶寡糖的制备方法:中国, 200710068097.X. 2007-09-19[2020-04-17]. http://g-wanfangdata-comcn.vpn.cau.edu.cn:8118/details/detail.do?_type=patent&id=CN200910068579.4.
[65]   Ningbo University. Preparation method of alginate oligosaccharides: Chinese, ZL200710068097.X. 2007-09-19[ 2020-04-17]. http://g-wanfangdata comcn.vpn.cau.edu.cn:8118/details/detail.do?_type=patent&id=CN200910068579.4
[66]   汤海青. 用海洋细菌Pseudoalteromonas tetrodonis QZ-4 发酵生产褐藻胶裂解酶的研究. 杭州: 浙江大学, 2010.
[66]   Tang H Q, Study on the production of algin lyase by marine bacteria Pseudoalteromonas tetrodonis QZ-4. Hangzhou: Zhejiang University, 2010.
[67]   胡晓珂. 褐藻胶裂合酶工程化研究与应用. 青岛: 中国海洋大学, 2004.
[67]   Hu X K. Engineering study and application of alginate lyase. Qingdao: Ocean University of China, 2004.
[68]   陈艳红, 杨帆, 肖安风, 等. 褐藻胶裂解酶发酵工艺优化及其中试放大. 集美大学学报(自然科学版), 2016,21(3):184-190.
[68]   Chen Y H, Yang F, Xiao A F, et al. Optimization of fermentation process of alginate lyase and its pilot scale-up. Journal of Jimei University (Natural Science Edition), 2016,21(3):184-190.
[69]   王明鹏. 基于褐藻酸降解的铜藻发酵提取技术及其产物农用功效研究. 哈尔滨:哈尔滨工业大学, 2017.
[69]   Wang M P. Research on fermentation technology of sargassum horneri based on alginate-degrading and agricultural effects of fermentation product. Harbin: Harbin Institute of Technology, 2017.
[70]   欧阳茜茜, 陈法锦, 李思东, 等. 琼胶及琼胶寡糖的加工与应用研究进展. 山东化工, 2016,45(23):58-60.
[70]   OuYang Q Q, Chen F J, Li S D, et al. Progress in processing and application of agar and agar oligosaccharides. Shandong Chemical Industry, 2016,45(23):58-60.
[71]   集美大学. 一种固定化琼胶酶制备琼胶寡糖的方法:中国,ZL201510076978. 0. 2015-05-27.[2020-04-22]. http://g-wanfangdata-com- cn.vpn.cau.edu.cn: 8118/detail s/detail.do? type=_ patent&id =CN201510076978.0.
[71]   Jimei University. A method for preparing agar oligosaccharides by immobilized agarase: China, ZL201510076978. 0. 2015-05-27.[ 2020-04-22]. http://g-wanfangdata-com- cn.vpn.cau.edu.cn: 8118/detail s/detail.do? type=_ patent&id =CN201510076978.0.
[72]   产竹华. 深海太平洋火色杆菌生产龙须菜寡糖的中试发酵策略及其相关酶的研究. 泉州:华侨大学, 2018.
[72]   Chan Z H., Studies on the pilot-scale fermentation strategy and related enzymes for the production of asparagus oligosaccharides by Colletobacter pacificans in the deep sea. Quanzhou: Huaqiao University, 2018.
[1] LIU Di,ZHANG Hong-chun. Advances in Genetically Engineered Animal Models of Chronic Obstructive Pulmonary Disease[J]. China Biotechnology, 2020, 40(4): 59-68.
[2] Shu-xia MA,Ling ZHANG,Jin-fei YAN,Song YOU. Study on the Synthesis of Polyunsaturated Fatty Acids by FattyAcid Synthase Pathway of Schizochytrium sp.[J]. China Biotechnology, 2018, 38(9): 27-34.
[3] Xue-ting HE,Min-hua ZHANG,Jie-fang HONG,Yuan-yuan MA. Research Progress on Butanol-Tolerant Strain and Tolerance Mechanism of Escherichia coli[J]. China Biotechnology, 2018, 38(9): 81-87.
[4] Suo-wei WU,Xiang-yuan WAN. Construction of Male-sterility System Using Biotechnology and Application in Crop Breeding and Hybrid Seed Production[J]. China Biotechnology, 2018, 38(1): 78-87.
[5] GAO Jiao-jiao, YANG Shu-lin. Advances in Optimization of Hyaluronic Acid Production by Genetic Engineering Technology[J]. China Biotechnology, 2017, 37(8): 72-77.
[6] WANG De-hua, MA Yi, HAN Lei, XIAO Xing, LI Yan-wei, DANG Shi-ying, FAN Zhi-yong, WEN Tao, HONG An. Preparation of Novel Recombinant PACAP Derivative MPL-2 and Its Effect on Anti-type 2 Diabetes Mellitus[J]. China Biotechnology, 2017, 37(5): 59-65.
[7] CHEN Jing, KANG Ci-ming, LUO Wen-xin. Advance in Research on Antibody Half-Life Related Engineering[J]. China Biotechnology, 2017, 37(5): 87-96.
[8] GAN Chun-yang, LIU Ya, LUO Ying-ying, ZHANG Wen-lu, HUANG Ai-long, CAI Xue-fei, HU Jie-li. A Cloning Strategy Suitable for DNA Modification by Fragment Scanning[J]. China Biotechnology, 2016, 36(8): 55-63.
[9] LIU Ting-ting, LIANG Zi-qiang, LIANG Shi-ke, GUO Ji-xing, WANG Fang-hai. Research Advances of Producing Spider Silk by Biotechnology[J]. China Biotechnology, 2016, 36(5): 132-137.
[10] FANG Shi-xiong, MA Yi, SHEN Shu-tao, ZHAO Shao-jun, HONG An. Efficient Preparation of TNFα Derivatives TRSP10 and Preliminary Study of Its Inhibitory Effect on Prostate Cancer DU145 Cells[J]. China Biotechnology, 2015, 35(4): 11-16.
[11] WU Meng, LIU Zuo-hua, LIN Bao-zhong, LAN Guo-cheng, ZOU Xian-gang, GE Liang-peng. Recent Progress in Transgenic Pigs[J]. China Biotechnology, 2015, 35(3): 92-98.
[12] JIANG Yan-chao, JIANG Shi-yun, FU Feng-ming, HUANG Kai, KANG Xing-xin, XU Dan. Advance in Research on HA Biosynthesis and Gene Engineering[J]. China Biotechnology, 2015, 35(1): 104-110.
[13] ZHAO Guo-ling, TAO Xin-yi, WANG Feng-qing, WEI Dong-zhi. The Construction and Application of EchDA Genetic Engineering Bacteria[J]. China Biotechnology, 2015, 35(1): 67-74.
[14] WANG Wei-wei, Tang Liang, ZHOU Wen-long, YANG Yan, GAO Bo, ZHAO Yun-Feng, WANG Wei. Progress in the Biosynthesis and Metabolism of Glutathione[J]. China Biotechnology, 2014, 34(7): 89-95.
[15] LIN Jun-han, QIU Dong-feng, LIN Chen. Development in Breeding of Butanol Producing Strain[J]. China Biotechnology, 2014, 34(12): 118-128.