Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (7): 24-31    DOI: 10.13523/j.cb.20190704
研究报告     
嗜热网球菌纤维二糖差向异构酶在枯草芽孢杆菌中的表达及发酵优化 *
王鑫淼,张康,陈晟,吴敬()
1 江南大学食品科学与技术国家重点实验室 江南大学生物工程学院工业生物技术教育部重点实验室教育部食品安全国际合作联合实验室 无锡 214122
Recombinant Expression and Fermentation Optimization of Dictyoglomus thermophilum Cellobiose 2-Epimerase in Bacillus subtilis
Xin-miao WANG,Kang ZHANG,Sheng CHEN,Jing WU()
1 School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, International Joint Laboratory on Food Safety, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
 全文: PDF(876 KB)   HTML
摘要:

通过化学方法合成嗜热网球菌(Dictyoglomus thermophilum)来源的纤维二糖差向异构酶基因ce,将其引入到载体pBSuL3-ce,构建重组质粒pBSuL3-ce并转化进枯草芽孢杆菌,发酵48h后测定胞内酶活为7.5U/ml。酶学性质结果表明:该酶的最适pH为8.5;最适温度为85℃,85℃的半衰期为120min。为降低发酵成本,对发酵培养基进行优化:以35g/L豆粕粉为氮源、5g/L甘油为碳源时,酶活力最高可达12.3U/ml。依据摇瓶优化的条件在3L发酵罐中扩大培养,胞内酶活达到56U/ml,比摇瓶培养酶活提高了8倍。利用发酵所得酶制备乳果糖,在乳糖浓度为400g/L、反应温度为85℃、初始pH 8.5、加酶量为20U/ml的条件下,乳果糖转化率可达51%。

关键词: 嗜热网球菌纤维二糖差向异构酶枯草芽孢杆菌酶学性质发酵优化    
Abstract:

A cellobiose 2-epimerase gene ce derived from Dictyoglomus thermophilum was synthesized and introduced into the expression vector pBSuL3 to construct a recombinant plasmid pBSuL3-ce and then transformed it into Bacillus subtilis. The intracellular activity of cellobiose epimerase reached 7.5U/ml after cultivated in TB culture for 48h. The enzymatic properties showed that the optimum pH of the enzyme was 8.5;the optimum temperature was 85℃, and the half-life of 85℃was 120min. In order to reduce the cost of fermentation, the fermentation medium was optimized.When 35g/L soybean meal was used as nitrogen source and 5g/L glycerin was used as carbon source, the intracellular activity reached 12.3U/ml. Then, according to the optimized condition of the shake flask, the culture was expanded in the 3L fermenter, and the intracellular activity of cellobiose epimerase reached 56U/ml, which was 8-fold higher than that of the shake flask culture.The lactulose was prepared by using the enzyme obtained by fermentation. When the lactose concentration was 400g/L, the reaction temperature was 85℃, the initial pH was 8.5, the enzyme amount was 20U/ml, the enzyme converted lactose to 51% lactulose.

Key words: Dictyoglomus thermophilum    Cellobiose 2-epimerase    Bacillus subtilis    Enzymatic properties    Fermentation optimization
收稿日期: 2018-12-29 出版日期: 2019-08-05
ZTFLH:  Q819  
基金资助: * 国家杰出青年基金(31425020);国家自然科学基金(31571776);中央高校基本科研业务费专项资(JUSRP51706A);江苏省重点研发计划(社会发展)项目资助项目(BE2015751)
通讯作者: 吴敬     E-mail: jingwu@jiangnan.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王鑫淼
张康
陈晟
吴敬

引用本文:

王鑫淼,张康,陈晟,吴敬. 嗜热网球菌纤维二糖差向异构酶在枯草芽孢杆菌中的表达及发酵优化 *[J]. 中国生物工程杂志, 2019, 39(7): 24-31.

Xin-miao WANG,Kang ZHANG,Sheng CHEN,Jing WU. Recombinant Expression and Fermentation Optimization of Dictyoglomus thermophilum Cellobiose 2-Epimerase in Bacillus subtilis. China Biotechnology, 2019, 39(7): 24-31.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20190704        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I7/24

图1  纤维二糖差向异构酶核酸电泳分析
图2  纤维二糖差向异构酶SDS-PAGE分析
图3  纯化后的纤维二糖差向异构酶的SDS-PAGE分析
图4  重组CEase最适pH
图5  重组CEase最适温度
图6  重组CE的温度稳定性
图7  HPLC分析酶转化产物
图8  氮源种类对重组菌生长和发酵产酶的影响
氮源 浓度 OD600 酶活(U/ml)
15 9.02±0.2 6.77±0.2
豆粕粉 25 14.60±0.2 10.46±0.2
35 16.20±0.2 12.13±0.2
15 7.30±0.2 3.17±0.2
玉米浆 25 10.30±0.2 7.88±0.2
35 8.20±0.2 4.45±0.2
15 7.84±0.2 7.71±0.2
大豆蛋白胨 25 11.28±0.2 9.24±0.2
35 10.56±0.2 6.86±0.2
表1  氮源浓度对重组菌生长和发酵产酶的影响
图9  玉米浆和豆粕粉浓度对重组菌发酵生长(a)和产酶(b)的影响
大豆蛋白胨浓度
(g/L)
豆粕粉浓度
(g/L)
OD600 酶活(U/ml)
15 25 13.50±0.2 8.38±0.2
15 35 11.80±0.2 9.16±0.2
15 45 10.46±0.2 6.72±0.2
25 25 12.03±0.2 6.21±0.2
25 35 13.70±0.2 7.61±0.2
25 45 14.20±0.2 3.14±0.2
35 25 12.10±0.2 4.31±0.2
35 35 10.10±0.2 4.03±0.2
35 45 15.20±0.2 4.18±0.2
表2  氮源组合对重组菌生长和发酵产酶的影响
图10  碳源种类对重组菌生长和发酵产酶的影响
图11  碳源浓度对重组菌和产酶的影响
图12  3L发酵罐菌体生长产酶情况
[1] 薛晓舟, 黄锦, 林海龙 , 等. 乳果糖合成研究进展及其生理调节作用. 当代化工, 2016,45(10):2480-2484.
Xue X Z, Huang J, Lin H L , et al. Recent researches on lactulose synthesis and its application in physiological regulation. Contemporary Chemical Industry, 2016,45(10):2480-2484.
[2] Kim Y S, Oh D K . Lactulose production from lactose as a single substrate by a thermostable cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus. Bioresour Technol, 2012,104:668-672.
doi: 10.1016/j.biortech.2011.11.016
[3] Krewinkel M, Kaiser J, Merz M , et al. Novel cellobiose 2-epimerases for the production of epilactose from milk ultrafiltrate containing lactose. J Dairy Sci, 2015,98(6):3665-3678.
doi: 10.3168/jds.2015-9411
[4] Mayer J, Kranz B, Fischer L . Continuous production of lactulose by immobilized thermostable beta-glycosidase from Pyrococcus furiosus. J Biotechnol, 2010,145(4):387-393.
doi: 10.1016/j.jbiotec.2009.12.017
[5] Schuster-Wolff-Bühring R, Fischer L, Hinrichs J . Production and physiological action of the disaccharide lactulose. International Dairy Journal, 2010,20(11):731-741.
doi: 10.1016/j.idairyj.2010.05.004
[6] 沈秋云 . 乳果糖制备用酶的构建及应用研究. 无锡:江南大学, 2015.
Shen Q Y . The construction and application of lactulose-producing enzymes. Wuxi:Jiangnan University, 2015.
[7] Park C S, Kim J E, Choi J G , et al. Characterization of a recombinant cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus and its application in the production of mannose from glucose. Appl Microbiol Biotechnol, 2011,92(6):1187-1196.
doi: 10.1007/s00253-011-3403-3
[8] Wu L, Xu C, Li S , et al. Efficient production of lactulose from whey powder by cellobiose 2-epimerase in an enzymatic membrane reactor. Bioresour Technol, 2017,233:305-312.
doi: 10.1016/j.biortech.2017.02.089
[9] 王贺 . 乳果糖制备用酶枯草芽孢杆菌芽孢表面展示系统的构建. 无锡:江南大学, 2013.
Wang H . Surface display of construction of lactulose preparatio enzymes on the Bacillus subtilis spores using crust protein as a carrier. Wuxi:Jiangnan University, 2013.
[10] Kim J E, Kim Y S, Kang L W , et al. Characterization of a recombinant cellobiose 2-epimerase from Dictyoglomus turgidum that epimerizes and isomerizes beta-1,4- and alpha-1,4-gluco-oligosaccharides. Biotechnol Lett, 2012,34(11):2061-2068.
doi: 10.1007/s10529-012-0999-z
[11] Shen Q, Zhang Y, Yang R , et al. Thermostability enhancement of cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus by site-directed mutagenesis. Journal of Molecular Catalysis B:Enzymatic, 2015,120:158-164.
doi: 10.1016/j.molcatb.2015.07.007
[12] Shen Q, Zhang Y, Yang R , et al. Enhancement of isomerization activity and iactulose production of cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus. Food Chem, 2016,207:60-67.
doi: 10.1016/j.foodchem.2016.02.067
[13] Vuolanto A, Weymarn N V, Kerovuo J , et al. Phytase production by high cell density culture of recombinant Bacillus subtilis. Biotechnology Letters, 2001,23(10):761-766.
doi: 10.1023/A:1010369325558
[14] 韩亮, 杨瑞金, 赵伟 . 纤维二糖差向异构酶在毕赤酵母中的表达及酶学性质研究. 工业微生物, 2016,46(1):16-21.
Hang L, Yang R J, Zhao W , et al. Expression of cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus in pichia pastoris and its enzymatic characterization. Industrial Microbiology, 2016,46(1):16-21.
[15] Ojima T, Saburi W, Sato H , et al. Biochemical characterization of a thermophilic cellobiose 2-epimerase from a Thermohalophilic bacterium, Rhodothermus marinus JCM9785. Biosci Biotechnol Biochem, 2011,75(11):2162-2168.
doi: 10.1271/bbb.110456
[16] Sato H, Saburi W, Ojima T , et al. Immobilization of a thermostable cellobiose 2-epimerase from Rhodothermus marinus JCM9785 and continuous production of epilactose. Biosci Biotechnol Biochem, 2012,76(8):1584-1587.
doi: 10.1271/bbb.120284
[17] Ito S, Taguchi H, Hamada S , et al. Enzymatic properties of cellobiose 2-epimerase from Ruminococcus albus and the synthesis of rare oligosaccharides by the enzyme. Appl Microbiol Biotechnol, 2008,79(3):433-441.
doi: 10.1007/s00253-008-1449-7
[18] Kim J H, Yang Y K, Chambliss G H . Evidence that bacillus catabolite control protein ccpA interacts with RNA polymerase to inhibit transcription. Mol Microbiol, 2005,56(1):155-162.
doi: 10.1111/j.1365-2958.2005.04496.x
[1] 梁爱玲,刘文婷,武攀,李倩,高健,张洁,刘卫东,贾士儒,郑迎迎. 来源于Exophiala aquamarina的新型玉米赤霉烯酮水解酶的性质及底物结合中心关键氨基酸的功能研究*[J]. 中国生物工程杂志, 2021, 41(10): 19-27.
[2] 朱衡,张继福,张云,胡云峰. 环氧交联剂和氨基载体固定化海洋假丝酵母脂肪酶*[J]. 中国生物工程杂志, 2020, 40(5): 57-68.
[3] 马翠萍,刘朵朵,潘炳菊,申会涛,宋亚囝. 来源于嗜碱芽孢杆菌N16-5甘露聚糖利用基因簇的乙酰酯酶AesA的克隆及性质分析*[J]. 中国生物工程杂志, 2020, 40(3): 65-71.
[4] 朱衡,张继福,张云,孙爱君,胡云峰. 聚乙二醇二缩水甘油醚交联氨基载体LX-1000EA固定化脂肪酶 *[J]. 中国生物工程杂志, 2020, 40(1-2): 124-132.
[5] 王菲,胡春辉,于浩. 6-羟基烟酸3-单加氧酶(NicC)催化反应机理研究 *[J]. 中国生物工程杂志, 2019, 39(7): 15-23.
[6] 谢玉锋,韩雪梅,路福平. 副干酪乳杆菌β-葡糖苷酶的表达、纯化及酶学性质研究 *[J]. 中国生物工程杂志, 2019, 39(5): 72-79.
[7] 李法彬,刘露,杜燕,班睿. 构建重组枯草芽孢杆菌催化制备D-对羟基苯甘氨酸[J]. 中国生物工程杂志, 2019, 39(3): 75-86.
[8] 朱梦露,王雪雨,刘鑫,路福平,孙登岳,秦慧民. 一种新型亮氨酸5-羟化酶NmLEH的异源表达、纯化及酶学性质分析 *[J]. 中国生物工程杂志, 2019, 39(12): 24-34.
[9] 任莉琼,吴敬,陈晟. 共表达N-乙酰转移酶提高Aspergillus nidulans α-葡糖苷酶在毕氏酵母中的表达研究 *[J]. 中国生物工程杂志, 2019, 39(10): 75-81.
[10] 王彤,徐岩,喻晓蔚. 毕赤酵母Kex2蛋白酶的同源表达及酶学性质 *[J]. 中国生物工程杂志, 2019, 39(1): 38-45.
[11] 程功,焦思明,任立世,冯翠,杜昱光. 枯草芽孢杆菌壳聚糖酶水解制备低脱乙酰度壳寡糖及其组分分析 *[J]. 中国生物工程杂志, 2018, 38(9): 19-26.
[12] 孙帆,宿玲恰,张康,吴敬. D-阿洛酮糖 3-差向异构酶在枯草芽孢杆菌中的高效表达及固定化细胞研究 *[J]. 中国生物工程杂志, 2018, 38(7): 83-88.
[13] 郭倩倩,高登科,程晓涛,路福平,田之仓优,秦慧民. 胆固醇氧化酶PsCO4异源表达、纯化及酶学性质分析 *[J]. 中国生物工程杂志, 2018, 38(6): 34-42.
[14] 王男,金吕华,张玲,林荣,杨海麟. 信号肽对亮氨酸脱氢酶在Bacillus subtilis中分泌表达的影响及酶学性质研究[J]. 中国生物工程杂志, 2018, 38(4): 46-53.
[15] 张玲,王男,金吕华,林荣,杨海麟. 双启动子促进亮氨酸脱氢酶在Bacillus subtilis中表达及发酵研究 *[J]. 中国生物工程杂志, 2018, 38(12): 21-31.