Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (1): 15-24    DOI: 10.13523/j.cb.20180102
研究报告     
地塞米松降解新基因的探讨
张进1,斯丹1,杨致邦1,熊玉霞1,马廉举2,李津阳3,蒋仁举1()
1 重庆医科大学基础医学院病原生物学教研室 重庆 400016
2 重庆医科大学药学实验教学中心 重庆 400016
3 重庆医科大学临床医学专业一系 重庆 400016
Study on New Genes Associated with Dexamethasone Degradation
Jin ZHANG1,Dan SI1,Zhi-bang YANG1,Yu-xia XIONG1,Lian-ju MA2,Jin-yang LI3,Ren-ju JIANG1()
1 Department of Pathogenic Biology, Basic Medical College, Chongqing Medical University, Chongqing 400016,China
2 Center of Pharmacy Experimental Teaching, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
3 Clinical Medical College, Chongqing Medical University, Chongqing 400016, China
 全文: PDF(1653 KB)   HTML
摘要: 目的

探讨地塞米松降解代谢新基因,为构建高效、稳定的地塞米松降解基因工程菌提供思路。

方法

根据新发现的地塞米松降解菌Burkholderia sp.CQ001(B.CQ001)全基因组测序和生物信息学分析,筛选疑似与地塞米松代谢相关的基因。提取B.CQ001总RNA逆转录为cDNA,以cDNA为模板,利用PCR技术快速克隆经实时荧光定量PCR技术(RT-qPCR)验证筛选出的新基因,测序鉴定后连接原核表达载体pET-28a-c(+),构建重组质粒pET-28a-Ivd。将pET-28a-Ivd转化感受态B.CQ001,高效液相色谱(HPLC)验证表达菌降解能力的提升。

结果

B.CQ001基因组中筛选出3个未知基因,分别为ORF05499、ORF05827、ORF06535,其表达产物分别为过氧化物还原酶、甾酮异构酶、异戊酰辅酶A脱氢酶;RT-qPCR分析显示,3个目的基因在地塞米松诱导后均有不同程度表达上调,基因ORF06535表达上调明显;在B.CQ001中过表达基因ORF06535,HPLC检测显示,表达菌对地塞米松磷酸钠和地塞米松的降解率可达到89.0%和80.0%,相比原菌B.CQ001有明显提升。

结论

B.CQ001中发现新的地塞米松降解相关基因ORF06535,并完成基因克隆和功能验证,为制备地塞米松及甾体激素污染的生物修复剂提供了新的基因信息。

关键词: 伯克霍尔德菌地塞米松降解基因实时荧光定量PCR    
Abstract: Objective:

To investigate the new genes associated with dexamethasone metabolism in order to provide an idea for the construction of an efficient and stable dexamethasone degrading engineering bacterium.

Methods:

Target genes which were suspectly associated with dexamethasone metabolism were screened according to the results of the whole genome sequencing and bioinformatics analysis of the newly discovered dexamethasone degrading bacteria Burkholderia sp.CQ001 (B.CQ001). Total RNA of B.CQ001 was extracted from B.CQ001wasprocessed by RT-PCR to produce cDNA. Using cDNA as a template, the new gene was rapidly cloned subsequently by PCR technology which was verified by real-time fluorescence quantitative PCR (RT-qPCR), then connected with prokaryotic expression vector pET-28a-c (+), after DNA sequencing. The recombinant plasmid pET-28a-Ivd was transformed into B.CQ001. Using high performance liquid chromatography (HPLC) to evaluate the biodegradability of the expressed bacteria for dexmethas one sodium phosphate.

Results:

Three unknown genes were screened out from B.CQ001: ORF05499, ORF05827, ORF06535, and their expressed products were: peroxiredoxin, ketosteroid isomerase, isovaleryl coenzyme A dehydrogenase; Real time quantitative PCR analysis showed that the expression levels of three genes were upregulated in different degrees after induced by dexamethasone ,especially gene ORF06535; HPLC showed that the degradation of dexamethasone sodium phosphate and dexamethasone rate can reach to 89% and 80% after overexpression of ORF06535 in B.CQ001. Compared with the original strain B.CQ001, the degradation ability had improved significantly.

Conclusion:

New gene ORF06535 associated with dexamethasone degradation was discovered in B.CQ001 which had been cloned and functional verified. It provides new genetic information for preparation of dexamethasone and steroid hormone bioremediation.

Key words: Burkholderia    Dexamethasone    Degradation    Gene    RT-qPCR
收稿日期: 2017-09-02 出版日期: 2018-01-31
ZTFLH:  Q78  
基金资助: 重庆市渝中区科委科技计划资助项目(20160110)
作者简介: 通讯作者 蒋仁举, E-mail: 743322835@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张进
斯丹
杨致邦
熊玉霞
马廉举
李津阳
蒋仁举

引用本文:

张进,斯丹,杨致邦,熊玉霞,马廉举,李津阳,蒋仁举. 地塞米松降解新基因的探讨[J]. 中国生物工程杂志, 2018, 38(1): 15-24.

Jin ZHANG,Dan SI,Zhi-bang YANG,Yu-xia XIONG,Lian-ju MA,Jin-yang LI,Ren-ju JIANG. Study on New Genes Associated with Dexamethasone Degradation. China Biotechnology, 2018, 38(1): 15-24.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20180102        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I1/15

PrimerPrimer sequences
rpoAForward5'-GATCTGAACGTCGAGCTTGC-3'
Reverse5'-AAGGAAGGTGAAGGCGTTGT-3'
ORF05499Forward5'-ACATGGTGCAGAACGAAGC-3'
Reverse5'-AGTACGCAATACGCATCGAA-3'
ORF05827Forward5'-CGCAGGATTTTTCATTGACG-3'
Reverse5'-GATCCGGTTGACCACCATC-3'
ORF06535Forward5'-CAATTCATGCTCGGTGAAGA-3'
Reverse5'-CAGATCCATCGGAAACTGGT-3'
表1  B. CQ001 3个未知基因实时荧光定量PCR引物
目的基因基因位置序列长度(bp)选择依据
ORF054992号染色体468与甾体代谢基因3β-HSD、ABC转运子距离接近
ORF058272号染色体474表达甾体代谢相关类酶:甾酮异构酶
ORF065352号染色体1 182课题组前期发现地塞米松降解相关41kDa蛋白
表2  待验证的B.CQ001 3个未知基因
图1  待验证的B. CQ001 3个未知基因基因簇排列情况
图2  待验证的B. CQ001 3个未知基因基因位置图
图3  目的基因ORF06535氨基酸序列与降解相关蛋白41kDa 5条肽段氨基酸序列比对结果
基因名称ORF05499ORF05827ORF06535
基因长度(bp)4684741 182
理化性质
氨基酸数155157393
分子式C722H1148N198O222S8C817H1260N250O224S6C1887H2996N524O569S24
相对分子质量(Mr)16 41018 36042 897
理论等电点(pI)4.579.985.71
不稳定系数26.17(稳定)24.47(稳定)30.23(稳定)
亲/疏水性(GRAVY)0.270(疏水)-0.466(亲水)-0.126(亲水)
预测蛋白过氧化物还原酶甾酮异构酶异戊酰辅酶A脱氢酶
可溶性可溶蛋白可溶蛋白可溶蛋白
亚细胞定位未知未知细胞质
跨膜区无跨膜(膜内)无跨膜(膜内)无跨膜(膜内)
信号肽
保守结构域OsmC结构域Snoal-like结构域Acyl-CoA-dh-N
氧化应激调节甾酮分子异构化物质分解代谢
表3  待验证的B. CQ001 3个未知基因生物信息学分析结果
基因名称ORF05499ORF05827ORF06535
二级结构α螺旋(40.65%)α螺旋(63.69%)α螺旋(40.20%)
β折叠(10.97%)β折叠(4.46%)β折叠(13.23%)
延伸链(25.16%)延伸链(12.74%)延伸链(22.65%)
无规则卷曲(23.23%)无规则卷曲(19.11%)无规则卷曲(23.92%)
三维建模
表3(续表)  待验证的B. CQ001 3个未知基因生物信息学分析结果
图4  RT-qPCR技术验证地塞米松诱导组和蔗糖无机盐对照组3个基因差异表达
图5  基因ORF06535 PCR产物的琼脂糖凝胶电泳结果
图6  pUCm-Ivd琼脂糖凝胶电泳结果
图7  pET-28a-Ivd琼脂糖凝胶电泳结果
图8  驯化冻存菌B.CQ001和表达菌B.CQ002降解过程HPLC色谱图
图9  B.CQ001和B.CQ002地塞米松磷酸钠和地塞米松的降解曲线
[1] Yabuuchi E, Kosako Y, Oyaizu H, et al.Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiology and Immunology, 1992, 36(12): 1251-1275.
doi: 10.1111/j.1348-0421.1992.tb02129.x
[2] Lemaire B, Chimphango S B M, Stirton C, et al. Biogeographical patterns of legume-nodulating Burkholderia spp.: From African fynbos to continental scales. Applied and Environmental Microbiology, 2016, 82(17): 5099-5115.
doi: 10.1128/AEM.00591-16 pmid: 4988186
[3] Hamid S, Bae W, Kim S, et al.Enhancing co-metabolic degradation of trichloroethylene with toluene using Burkholderia vietnamiensis G4 encapsulated in polyethylene glycol polymer. Environmental Technology, 2014, 35(12): 1470-1477.
doi: 10.1080/09593330.2013.871045 pmid: 24701945
[4] 赵奎. 地塞米松磷酸钠注射液在急诊应用的处方分析. 中国医院用药评价与分析, 2011, 11(5): 475-476.
Zhao K.Prescription analysis of dexamethasone sodium phosphate injection in emergency department . Chinese Hospital Drug Evaluation and Analysis, 2011, 11(5): 475-476.
[5] Takahashi T, Nakamura Y, Tsuya A, et al.Pharmacokinetics of aprepitant and dexamethasone after administration of chemotherapeutic agents and effects of plasma substance P concentration on chemotherapy-induced nausea and vomiting in Japanese cancer patients. Cancer Chemotherapy and Pharmacology, 2011, 68(3): 653-659.
doi: 10.1007/s00280-010-1519-2
[6] Rathod S S, Motghare V M, Deshmukh V S, et al.Prescribing practices of topical corticosteroids in the outpatient dermatology department of a rural tertiary care teaching hospital. Indian Journal of Dermatology, 2013, 58(5): 342.
doi: 10.4103/0019-5154.117293 pmid: 3778770
[7] Kim E J, Lee J G, Kim J Y, et al. Enhanced immune-modulatory effects of thalidomide and dexamethasone co-treatment on T cell subsets. Immunology, 2017, 152(4): 628-637.
doi: 10.1111/imm.12804 pmid: 28758197
[8] Mushaben E M, Brandt E B, Hershey G K, et al.Differential effects of rapamycin and dexamethasone in mouse models of established allergic asthma. PLoS One, 2013, 8(1): e54426.
doi: 10.1371/journal.pone.0054426 pmid: 3547928
[9] Vander Linden S C, Heringa M B, Man H Y,et al. Detection of multiple hormonal activities in wastewater effluents and surface water, using a panel of steroid receptor CALUX bioassays. Environ Sci Technol, 2008, 42(15): 5814-5820
doi: 10.1021/es702897y pmid: 18754514
[10] Schriks M, van Leerdam J A, van der Linden S C,et al.High-resolution mass spectrometric identification and quantification of glucocorticoid compounds in various wastewaters in the Netherlands.Environ Sci Technol, 2010, 44(12): 4766-4774.
doi: 10.1021/es100013x pmid: 20507090
[11] Chang H, Hu J, Shao B.Occurrence of natural and synthetic glucocorticoids in sewage treatment plants and receiving river waters.Environ Sci Technol, 2007, 41(10): 3462-3468.
doi: 10.1021/es062746o pmid: 17547164
[12] 石中全,周裕珍,杨致邦,等.废水中地塞米松污染的探讨, 中国医药指南,2012, 10(9): 319-321.
doi: 10.3969/j.issn.1671-8194.2012.09.258
Shi Z Q, Zhou Y Z, Yang Z B,et al.Investigation on the pollution of dexamethasone in wastewater. Chinese Medical Guideline,2012, 10(9): 319-321.
doi: 10.3969/j.issn.1671-8194.2012.09.258
[13] Takahashi T,Nakamura Y,Tsuya A,et al.Pharmacokinetics of aprepitant and dexamethasone after administration of chemotherapeutic agents and effects of plasma substance P concentration on chemotherapy-induced nausea and vomiting in Japanese cancer patients.Cancer Chemother Pharmacol, 2011, 68(3): 653-659.
doi: 10.1007/s00280-010-1519-2
[14] 韦英杰, 王长梅, 蔡雪婷,等. 地塞米松影响骨骼发育的斑马鱼模型的建立. 药学学报, 2013, 48(2): 255-260.
Wei Y J, Wang C M, Cai X T, et al.Establishment of zebrafish model of skeletal development affectedby dexamethasone . Journal of Pharmacology, 2013, 48(2): 255-260.
[15] 杨茜, 李晓愚, 斯丹,等. 饮水中地塞米松污染对小鼠肠道菌群的影响. 南方医科大学学报, 2016, 36(2): 238-243.
Yang Q, Li X Y, Si D, et al.Effects of dexamethasone pollution in drinking water on intestinal microflora in mice . Journal of Southern Medical University, 2016, 36(2): 238-243.
[16] 斯丹, 杨致邦, 蒋任举等.具有高效降解地塞米松能力的伯克霍尔德菌CQ001株的分离及功能基因组学分析. 第三军医大学学报, 2017, 39(13): 1352-1359.
doi: 10.16016/j.1000-5404.201612198
Si D, Yang Z B, Jiang R J, et al.Separation and functional genomics of Burkholderia sp.CQ001with high degradation ability of dexamethasone . Journal of Third Military Medical University, 2017, 39(13): 1352-1359.
doi: 10.16016/j.1000-5404.201612198
[17] Bustin S A, Benes V, Garson J A, et al.The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry, 2009, 55(4): 611-622.
doi: 10.1373/clinchem.2008.112797 pmid: 19246619
[18] 石中全, 杨致邦, 朱黎黎,等. 一株地塞米松磷酸钠降解菌的分离鉴定. 中国微生态学杂志, 2014, 26(11): 1250-1256.
Shi Z Q, Yang Z B, Zhu L L, et al.Isolation and identification of a strain of dexamethasone sodium phosphate degradation bacteria . Chinese Journal of Microecology, 2014, 26(11): 1250-1256.
[19] Zhu L, Yang Z, Qian Y, et al.Degradation of dexamethasone by acclimated strain of Pseudomonas Alcaligenes. International Journal of Clinical & Experimental Medicine, 2015, 8(7): 10971.
[20] Yao K, Wang F Q, Zhang H C, et al.Identification and engineering of cholesterol oxidases involved in the initial step of sterols catabolism in Mycobacterium neoaurum. Metabolic Engineering, 2013, 15(1): 75-87.
doi: 10.1016/j.ymben.2012.10.005 pmid: 23164577
[21] Xiong G, Luo Y, Jin S, et al.Cis- and trans-regulatory elements of 3alpha-hydroxysteroid dehydrogenase/carbonyl reductase as biosensor system for steroid determination in the environment. Chemico-Biological Interactions, 2009, 178(3): 215-220.
doi: 10.1016/j.cbi.2008.10.012 pmid: 19000658
[22] Cabrera J E, Paz J L P, Genti-Raimondi S. Steroid-inducible transcription of the 3β/17β-hydroxysteroid dehydrogenase gene(3β/17β-hsd) in Comamonas testosteroni. The Journal of Steroid Biochemistry and Molecular Biology, 2000, 73(3): 147-152.
doi: 10.1016/S0960-0760(00)00066-2
[23] Pandey A K, Sassetti C M.Mycobacterial persistence requires the utilization of host cholesterol. Proceedings of the National Academy of Sciences, 2008, 105(11): 4376-4380.
doi: 10.1073/pnas.0711159105 pmid: 18334639
[24] Bloem A, Sanchez I, Dequin S, et al.Metabolic impact of redox cofactor perturbations on the formation of aroma compounds in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2015, 82(1): 174-183.
[1] 武秀知,王宏杰,祖尧. 斑马鱼hoxa1a基因调控颅面骨骼发育的功能研究*[J]. 中国生物工程杂志, 2021, 41(9): 20-26.
[2] 贺立恒,张毅,张洁,任豫超,解红娥,唐锐敏,贾小云,武宗信. 基于转录组和WGCNA的甘薯花青素合成相关基因共表达网络的构建及核心基因的挖掘*[J]. 中国生物工程杂志, 2021, 41(9): 27-36.
[3] 陈亚超,李楠楠,刘子迪,胡冰,李春. 源于甘草内生菌的甘草酸合成相关功能基因的宏基因组挖掘*[J]. 中国生物工程杂志, 2021, 41(9): 37-47.
[4] 杨柳,牟豪,许国洋,白运川,余远迪. 培养山羊痘病毒常用细胞在X-gal环境中的显色差异分析*[J]. 中国生物工程杂志, 2021, 41(9): 48-54.
[5] 赵晓煜,徐祺玲,赵晓东,安云飞. 基因治疗慢病毒载体的转导增强策略*[J]. 中国生物工程杂志, 2021, 41(8): 52-58.
[6] 王晓洁,孟凡强,周立邦,吕凤霞,别小妹,赵海珍,陆兆新. 利用基因组改组技术提高短杆菌素产量及其培养条件优化*[J]. 中国生物工程杂志, 2021, 41(8): 42-51.
[7] 郭曼曼,田开仁,乔建军,李艳妮. 噬菌体重组酶系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(8): 90-102.
[8] 王宇轩,陈婷,张永亮. MiR-148生物学功能研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 74-80.
[9] 梁晋刚,张旭冬,毕研哲,王颢潜,张秀杰. 转基因抗虫玉米发展现状与展望*[J]. 中国生物工程杂志, 2021, 41(6): 98-104.
[10] 胡暄,王松,于学玲,张晓鹏. 不稳定EGFP细胞模型的构建及其在基因编辑体系评价中的应用*[J]. 中国生物工程杂志, 2021, 41(5): 17-26.
[11] 王艳梅,寇航,马梅,申玉玉,赵宝顶,路福平,黎明. 利用CRISPR-Cas9技术失活黑曲霉中果胶酶基因及突变株性能评价*[J]. 中国生物工程杂志, 2021, 41(5): 35-44.
[12] 冷燕,孙康泰,刘倩倩,蒲阿庆,李翔,万向元,魏珣. 全球基因编辑作物监管趋势研究[J]. 中国生物工程杂志, 2021, 41(12): 24-29.
[13] 何伟,祝蕾,刘欣泽,安学丽,万向元. 玉米遗传转化与商业化转基因玉米开发*[J]. 中国生物工程杂志, 2021, 41(12): 13-23.
[14] 杨梦冰,江易林,祝蕾,安学丽,万向元. CRISPR/Cas植物基因组编辑技术及其在玉米中的应用*[J]. 中国生物工程杂志, 2021, 41(12): 4-12.
[15] 殷芳冰,王成,龙艳,董振营,万向元. 玉米雌穗性状遗传分析与形成机制*[J]. 中国生物工程杂志, 2021, 41(12): 30-46.