Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (9): 20-26    DOI: 10.13523/j.cb.2105054
研究报告     
斑马鱼hoxa1a基因调控颅面骨骼发育的功能研究*
武秀知1,2,3,王宏杰1,2,3,祖尧1,2,3,**()
1 上海海洋大学水产种质资源发掘与利用教育部重点实验室 上海 201306
2 上海海洋大学科技部海洋生物科学国际联合研究中心 上海 201306
3 上海海洋大学国家水生动物病原库 上海 201306
Functional Study of hoxa1a Regulating Craniofacial Bone Development in Zebrafish
WU Xiu-zhi1,2,3,WANG Hong-jie1,2,3,ZU Yao1,2,3,**()
1 Key Laboratory of Exploration and Utilization of Aquatic Germplasm Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
2 International Joint Research Center for Marine Biosciences, Shanghai Ocean University, Shanghai 201306, China
3 National Aquatic Animal Pathogen Bank, Shanghai Ocean University, Shanghai 201306, China
 全文: PDF(1382 KB)   HTML
摘要:

hox基因编码一类高度保守的转录因子家族,人类HOXA1的突变会导致阿萨巴斯卡发育不良综合征 (Athabascan brainstem dysgenesis syndrome, ABDS),使人出现因颅骨异常导致的面部畸形和面部麻痹等症状。利用模式生物斑马鱼研究其同源基因hoxa1a的功能机制。首先利用CRISPR/Cas9技术对斑马鱼hoxa1a进行基因编辑,获得了hoxa1a基因突变,T7E1酶切结果显示F0酶切效率平均为70%。F1进一步筛选到两种突变类型,分别是插入了8 bp和删除了7 bp的杂合突变体。杂合子自交得到hoxa1a F2纯合突变体,并且测序验证hoxa1a基因突变成功。5 dpf时,hoxa1a纯合突变体出现颅面发育异常。阿尔新蓝软骨染色和茜素红硬骨染色结果表明,hoxa1a突变体中颅骨发育异常、筛骨板断裂,鳃弓发育出现缺损。成功在斑马鱼中构建ABDS疾病模型,表明hoxa1a突变会造成斑马鱼颅面骨骼发育异常,为其功能机制研究奠定了基础,为人类ABDS疾病的致病机制研究提供了新的思路。

关键词: hoxa1a基因ABDS颅骨发育CRISPR/Cas9    
Abstract:

hox genes encode a family of highly conserved transcription factors. Human HOXA1 mutation causes ABDS (athabascan brainstem dysgenesis syndrome), which leads to craniofacial bone deformity induced facial defect and paralysis. In this paper, zebrafish was used to study the functional mechanism of the homologous gene hoxa1a. Firstly, hoxa1a gene was edited by using CRISPR/Cas9 technology, which resulted in gene mutation. The T7E1 assay showed F0 digestion efficiency was 70% on average. Then F1 was screened and it was found that hoxa1a heterozygote generated 8 bp insertion and 7 bp deletion. Furthermore, the heterozygotes were crossed and hoxa1a homozygous F2 mutant was obtained, which was confirmed by sequencing. At 5 dpf, homozygous mutants of hoxa1a showed craniofacial dysplasia. The results of alcian blue cartilage staining and alizarin red hard bone staining demonstrated that the hoxa1a mutant had abnormal skull development, fracture of ethmoid plate, and defect of gill arch development. In this study, ABDS disease model in zebrafish was successfully constructed and the results indicate that hoxa1a mutation might cause abnormal craniofacial skeletal development, which lays a foundation for its mechanism study and provides a new idea for the pathogenesis of human ABDS disease.

Key words: hoxa1a gene    ABDS    Craniofacial skeletal development    CRISPR/Cas9
收稿日期: 2021-05-29 出版日期: 2021-09-30
ZTFLH:  Q812  
基金资助: * 国家自然科学基金(32170423);国家自然科学基金(31501166);上海市科委扬帆计划(15YF1405000)
通讯作者: 祖尧     E-mail: yzu@shou.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
武秀知
王宏杰
祖尧

引用本文:

武秀知,王宏杰,祖尧. 斑马鱼hoxa1a基因调控颅面骨骼发育的功能研究*[J]. 中国生物工程杂志, 2021, 41(9): 20-26.

WU Xiu-zhi,WANG Hong-jie,ZU Yao. Functional Study of hoxa1a Regulating Craniofacial Bone Development in Zebrafish. China Biotechnology, 2021, 41(9): 20-26.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2105054        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I9/20

图1  利用CRISPR/Cas9系统编辑斑马鱼hoxa1a基因
图2  成功得到hoxa1a的纯合突变体斑马鱼,并发现面部骨骼发育畸形
图3  hoxa1a突变氨基酸序列及其蛋白质结构
图4  斑马鱼成鱼硬骨染色表明hoxa1a纯合突变体面部颅骨发育缺陷、筛骨板断裂
图5  hoxa1a缺失导致斑马鱼幼鱼面部软骨发育缺陷、筛骨板断裂
[1] Mork L, Crump G. Zebrafish craniofacial development: a window into early patterning. Current Topics in Developmental Biology, 2015, 115:235-269.
[2] Bhattacherjee V, Mukhopadhyay P, Singh S, et al. Neural crest and mesoderm lineage-dependent gene expression in orofacial development. Differentiation, 2007, 75(5):463-477.
pmid: 17286603
[3] Barrow J R, Capecchi M R. Compensatory defects associated with mutations in Hoxa1 restore normal palatogenesis to Hoxa2 mutants. Development (Cambridge, England), 1999, 126(22):5011-5026.
doi: 10.1242/dev.126.22.5011
[4] Mallo M. Reassessing the role of hox genes during vertebrate development and evolution. Trends in Genetics, 2018, 34(3):209-217.
doi: 10.1016/j.tig.2017.11.007
[5] Shah N, Sukumar S. The Hox genes and their roles in oncogenesis. Nature Reviews Cancer, 2010, 10(5):361-371.
doi: 10.1038/nrc2826
[6] Mallo M, Alonso C R. The regulation of Hox gene expression during animal development. Development (Cambridge, England), 2013, 140(19):3951-3963.
doi: 10.1242/dev.068346
[7] Tischfield M A, Bosley T M, Salih M A M, et al. Homozygous HOXA1 mutations disrupt human brainstem, inner ear, cardiovascular and cognitive development. Nature Genetics, 2005, 37(10):1035-1037.
pmid: 16155570
[8] Higley M J, Walkiewicz T W, Miller J H, et al. Bilateral complete labyrinthine aplasia with bilateral internal carotid artery aplasia, developmental delay, and gaze abnormalities: a presumptive case of a rare HOXA1 mutation syndrome. AJNR American Journal of Neuroradiology, 2011, 32(2):E23-E25.
doi: 10.3174/ajnr.A1969
[9] Holve S, Friedman B, Hoyme H E, et al. Athabascan brainstem dysgenesis syndrome. American Journal of Medical Genetics, 2003, 120A(2):169-173.
doi: 10.1002/(ISSN)1096-8628
[10] Hunt P, Gulisano M, Cook M, et al. A distinct Hox code for the branchial region of the vertebrate head. Nature, 1991, 353(6347):861-864.
doi: 10.1038/353861a0
[11] Roux M, Laforest B, Eudes N, et al. Hoxa1 and Hoxb1 are required for pharyngeal arch artery development. Mechanisms of Development, 2017, 143:1-8.
doi: 10.1016/j.mod.2016.11.006
[12] De Kumar B, Parker H J, Paulson A, et al. Hoxa1 targets signaling pathways during neural differentiation of ES cells and mouse embryogenesis. Developmental Biology, 2017, 432(1):151-164.
doi: S0012-1606(17)30536-5 pmid: 28982536
[13] Shih L J, Tsay H J, Lin S C, et al. Expression of zebrafish Hoxa1a in neuronal cells of the midbrain and anterior hindbrain. Mechanisms of Development, 2001, 101(1-2):279-281.
pmid: 11231091
[14] Lufkin T, Dierich A, LeMeur M, et al. Disruption of the Hox-1.6 homeobox gene results in defects in a region corresponding to its rostral domain of expression. Cell, 1991, 66(6):1105-1119.
pmid: 1680563
[15] McClintock J M, Jozefowicz C, Assimacopoulos S, et al. Conserved expression of Hoxa1 in neurons at the ventral forebrain/midbrain boundary of vertebrates. Development Genes and Evolution, 2003, 213(8):399-406.
pmid: 12748854
[16] Balling R, Mutter G, Gruss P, et al. Craniofacial abnormalities induced by ectopic expression of the homeobox gene Hox-1.1 in transgenic mice. Cell, 1989, 58(2):337-347.
pmid: 2568891
[17] Kaur S, Singh G, Stock J L, et al. Dominant mutation of the murine Hox-2.2 gene results in developmental abnormalities. The Journal of Experimental Zoology, 1992, 264(3):323-336.
[18] McLain K, Schreiner C, Yager K L, et al. Ectopic expression of Hox-2.3 induces craniofacial and skeletal malformations in transgenic mice. Mechanisms of Development, 1992, 39(1-2):3-16.
pmid: 1362649
[19] Lufkin T, Mark M, Hart C P, et al. Homeotic transformation of the occipital bones of the skull by ectopic expression of a homeobox gene. Nature, 1992, 359(6398):835-841.
doi: 10.1038/359835a0
[20] Kuraku S, Meyer A. The evolution and maintenance of Hox gene clusters in vertebrates and the teleost-specific genome duplication. The International Journal of Developmental Biology, 2009, 53(5-6):765-773.
doi: 10.1387/ijdb.072533km
[1] 毕博,张宇,赵慧. 酵母杂交系统在CRISPR/Cas9基因编辑系统脱靶率研究中的应用*[J]. 中国生物工程杂志, 2021, 41(6): 27-37.
[2] 郭洋,陈艳娟,刘怡辰,王海杰,王成稷,王珏,万颖寒,周宇,奚骏,沈如凌. Pd-1基因敲除小鼠构建及初步表型验证[J]. 中国生物工程杂志, 2021, 41(10): 1-11.
[3] 郭洋,万颖寒,王珏,龚慧,周宇,慈磊,万志鹏,孙瑞林,费俭,沈如凌. Toll样受体4(TLR4)基因剔除小鼠构建及初步表型分析[J]. 中国生物工程杂志, 2020, 40(6): 1-9.
[4] 黄胜, 严启滔, 熊仕琳, 彭弈骐, 赵蕊. 基于CRISPR/Cas9-SAM系统CHD5基因过表达慢病毒载体的构建及对膀胱癌T24细胞增殖,迁移和侵袭能力的影响 *[J]. 中国生物工程杂志, 2020, 40(3): 1-8.
[5] 王伟东,杜加茹,张运尚,樊剑鸣. CRISPR/Cas9在人病毒感染相关疾病治疗研究中的应用*[J]. 中国生物工程杂志, 2020, 40(12): 18-24.
[6] 雷海英,赵青松,白凤麟,宋慧芳,王志军. 利用CRISPR/Cas9鉴定玉米发育相关基因ZmCen*[J]. 中国生物工程杂志, 2020, 40(12): 49-57.
[7] 王玥,牟彦双,刘忠华. 基于CRISPR/Cas系统的单碱基编辑技术研究进展*[J]. 中国生物工程杂志, 2020, 40(12): 58-66.
[8] 何秀娟,胡凤枝,刘秋丽,刘玉萍,祝玲,郑文云. 乳腺癌细胞QSOX1的CRISPR/Cas9基因编辑及其对增殖侵袭的影响研究*[J]. 中国生物工程杂志, 2020, 40(11): 1-9.
[9] 王志敏,毕美玉,贺佳福,任炳旭,刘东军. CRISPR/Cas9系统的发展及其在动物基因编辑中的应用 *[J]. 中国生物工程杂志, 2020, 40(10): 43-50.
[10] 菅璐,黄映辉,梁天亚,王利敏,马洪涛,张婷,李丹阳,王明连. 利用CRISPR/Cas9技术建立敲除JAK2基因K562细胞系 *[J]. 中国生物工程杂志, 2019, 39(7): 39-47.
[11] 周松涛,陈蕴,龚笑海,金坚,李华钟. 利用CRISPR/Cas9技术构建稳定表达人白蛋白基因的中国仓鼠卵巢细胞系 *[J]. 中国生物工程杂志, 2019, 39(4): 52-59.
[12] 万颖寒,慈磊,王珏,龚慧,李俊,董茹,孙瑞林,费俭,沈如凌. PD-L1基因敲除小鼠构建及初步表型验证[J]. 中国生物工程杂志, 2019, 39(12): 42-49.
[13] 刘赛宝,李亚芳,王辉,王伟,冉多良,陈洪岩,孟庆文. 利用CRISPR/Cas9技术构建流感病毒高产细胞系MDCK-Tpl2 -/-*[J]. 中国生物工程杂志, 2019, 39(1): 46-54.
[14] 潘海峰,杨晗,于思远,李廷栋,葛胜祥. 基于体外组装核糖核蛋白形式的CRISPR/Cas9基因编辑方法研究进展 *[J]. 中国生物工程杂志, 2019, 39(1): 71-76.
[15] 戴红苗,付业胜,张令强. 应用CRISPR/Cas9技术构建YOD1基因敲除小鼠 *[J]. 中国生物工程杂志, 2018, 38(6): 52-57.