Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (7): 74-80    DOI: 10.13523/j.cb.2103028
综述     
MiR-148生物学功能研究进展*
王宇轩,陈婷,张永亮()
华南农业大学动物科学学院 广州 510642
Research Progress on the Biological Function of MiR-148
WANG Yu-xuan,CHEN Ting,ZHANG Yong-liang()
College of Animal Science, South China Agricultural University, Guangzhou 510642, China
 全文: PDF(1184 KB)   HTML
摘要:

microRNA(miRNA)是一种分布广泛、功能多样、在物种间高度保守的非编码单链RNA。miRNA可通过与目标mRNA的3'非编码区(3'UTR)完全或不完全靶向结合来调控基因的表达,在转录水平发挥调控作用。miRNA以稳定的形式存在于各种体液中,可作为不同生理或病理状态下的生物标志物。基于前期高通量测序发现miR-148在猪初乳与常乳外泌体中差异表达,拟从免疫、肿瘤及其他生物学功能,综述miR-148相关研究进展,以期为乳汁外泌体运载miR-148发挥生物学功能的研究提供参考。

关键词: 间充质干细胞外泌体炎症性肠病miR-148生物学功能靶基因    
Abstract:

MicroRNA (miRNA) is a non-coding single-stranded RNA that is widely distributed, diverse in functions, and highly conserved among species. MiRNA can regulate gene expression by completely or incompletely targeting the 3'non-coding region (3' UTR) of target mRNA, and play a regulatory role at the transcriptional level. At the same time, miRNA exists in various body fluids in a stable form, and can be used as a biomarker under different physiological or pathological conditions. Based on the early high-throughput sequencing found that miR-148 is differentially expressed in porcine colostrum and normal milk exosomes, this article intends to review the progress of miR-148 related research in terms of immunity, tumors and other biological functions, with the hope that it provides reference for the study on the biological functions of miR-148 carried by exosomes.

Key words: Mesenchymal stem cells    Exosomes    Inflammatory bowel disease    MiR-148    Biological function    Target gene
收稿日期: 2021-03-15 出版日期: 2021-08-03
ZTFLH:  R574.62  
基金资助: * 国家自然科学基金资助项目(31872973);* 国家重点研发计划(2016YFD0500503);国家自然科学基金(31802156);国家自然科学基金(2072812);广东省自然科学基金资助项目(2019A1515011734)
通讯作者: 张永亮     E-mail: zhangyl@scau.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王宇轩
陈婷
张永亮

引用本文:

王宇轩,陈婷,张永亮. MiR-148生物学功能研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 74-80.

WANG Yu-xuan,CHEN Ting,ZHANG Yong-liang. Research Progress on the Biological Function of MiR-148. China Biotechnology, 2021, 41(7): 74-80.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2103028        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I7/74

序号 人乳 猪乳 牛乳 大熊猫 袋鼠
1 MiR-148a-3p MiR-148a-3p MiR-148a Let-7b-5p MiR-181
2 MiR-30b-5p MiR-30a-5p Let-7a-5p MiR-92a-1&-2-3p Let-7f
3 Let-7f-5p&-2-5p MiR-25-5p Let-7b MiR-148a-3p MiR-22
4 MiR-146b-5p MiR-182-5p MiR-21-5p MiR-30a-5p MiR-10a
5 MiR-29a-3p MiR-30d-5p MiR-99a-5p MiR-7a-1/-2/-3-5p MiR-148a
6 Let-7a-2-5p&-3-5p MiR-574-3p Let-7f MiR-181a-1/-2-5p MiR-30a
7 MiR-141-3p MiR-30c-2-5p&-1-5p Let-7c Let-7i-5p MiR-184
8 MiR-182-5p MiR-200c-3p MiR-200c Let-7f-1/-2-5p MiR-375
9 MiR-200a-3p MiR-191-5p MiR-26a Let-7g-5p MiR-191
10 MiR-378-3p MiR-7a-1-5p MiR-30d MiR-21-5p MiR-10b
表1  不同物种乳汁外泌体丰富度排名前10的miRNAs
图1  MiR-148家族前体
图2  MiR-148在免疫中的部分调控作用
物种 名称 靶基因 细胞 生物学作用 参考文献
MiR-148a ITGA9 胶质母细胞瘤细胞 抑制胶质母细胞瘤的增殖和迁移 [39]
MiR-148a-3p PTEN 肾小球细胞 抑制狼疮性肾炎中肾小球细胞的增殖 [40]
MiR-148a MSK1 前列腺上皮细胞 抑制细胞生长以及细胞迁移 [41]
MiR-148a KLF4 前列腺癌细胞 抑制前列腺癌细胞生长 [42]
MiR-148a AKT2 肾细胞癌细胞 抑制肾细胞癌增殖和迁移 [43]
MiR-148a MAP3K9 食管鳞状细胞癌细胞 抑制食道鳞状细胞癌细胞增殖和迁移 [30]
MiR-148a SMAD2 胃癌细胞 抑制胃癌细胞的转移 [44]
MiR-148a HPIP 肝癌细胞 抑制肝癌细胞的生长和转移 [45]
MiR-148a MET 肝癌细胞 抑制肝癌细胞的增殖与转移 [46]
MiR-148a CCKBR;Bcl-2 胰腺癌细胞 胰腺癌细胞的增殖 [47]
MiR-148a CAND1 前列腺癌细胞 促进前列腺癌细胞的增殖 [48]
MiR-148a-3p DNMT1 胶质母细胞瘤细胞 抑制胶质母细胞瘤细胞生长与迁移 [49]
表2  MiR-148在肿瘤中的研究
物种 名称 靶基因 细胞 生物学作用 参考文献
MiR-148a-3p PTEN 脂肪细胞 促进脂肪细胞的分化 [56]
MiR-148a-3p Meox2 骨骼肌卫星细胞 促进骨骼肌卫星细胞的分化和抑制细胞凋亡 [57]
MiR-148a-3p KLF6 肌肉细胞 抑制牛肌肉细胞的增殖并促进细胞凋亡 [58]
人、小鼠 MiR-148a DNMT1 肝细胞 促进白肝脏蛋白产生 [59]
MiR-148a DNMT1 间充质干细胞 促进心肌间充质干细胞分化 [60-61]
表3  MiR-148在其他生物学过程中的研究
[1] Bartel D P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2):281-297.
pmid: 14744438
[2] Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nature Reviews Genetics, 2010, 11(9):597-610.
doi: 10.1038/nrg2843
[3] Friedrich M, Pracht K, Mashreghi M F, et al. The role of the miR-148/-152 family in physiology and disease. European Journal of Immunology, 2017, 47(12):2026-2038.
doi: 10.1002/eji.201747132 pmid: 28880997
[4] Carr L E, Bowlin A K, Elolimy A A, et al. Neonatal diet impacts circulatory miRNA profile in a porcine model. Frontiers in Immunology, 2020, 11:1240.
doi: 10.3389/fimmu.2020.01240
[5] Zhou Q, Li M Z, Wang X Y, et al. Immune-related microRNAs are abundant in breast milk exosomes. International Journal of Biological Sciences, 2012, 8(1):118-123.
pmid: 22211110
[6] Gu Y R, Li M Z, Wang T, et al. Lactation-related microRNA expression profiles of porcine breast milk exosomes. PLoS One, 2012, 7(8):e43691.
doi: 10.1371/journal.pone.0043691
[7] Cai M C, He H B, Jia X B, et al. Genome-wide microRNA profiling of bovine milk-derived exosomes infected with Staphylococcus aureus. Cell Stress and Chaperones, 2018, 23(4):663-672.
doi: 10.1007/s12192-018-0876-3
[8] Ma J D, Wang C D, Long K R, et al. Exosomal microRNAs in giant Panda (Ailuropoda melanoleuca) breast milk: potential maternal regulators for the development of newborn cubs. Scientific Reports, 2017, 7(1):3507.
doi: 10.1038/s41598-017-03707-8
[9] Modepalli V, Kumar A, Hinds L A, et al. Differential temporal expression of milk miRNA during the lactation cycle of the marsupial tammar wallaby (Macropus eugenii). BMC Genomics, 2014, 15(1):1012.
doi: 10.1186/1471-2164-15-1012
[10] Pan W, Zhu S, Yuan M, et al. MicroRNA-21 and microRNA-148a contribute to DNA hypomethylation in lupus CD4+ T cells by directly and indirectly targeting DNA methyltransferase 1. Journal of Immunology, 2010, 184(12):6773-6781.
doi: 10.4049/jimmunol.0904060
[11] Haftmann C, Stittrich A B, Zimmermann J, et al. MiR-148a is upregulated by Twist1 and T-bet and promotes Th1-cell survival by regulating the proapoptotic gene Bim. European Journal of Immunology, 2015, 45(4):1192-1205.
doi: 10.1002/eji.201444633 pmid: 25486906
[12] Gonzalez-Martin A, Adams B D, Lai M Y, et al. The microRNA miR-148a functions as a critical regulator of B cell tolerance and autoimmunity. Nature Immunology, 2016, 17(4):433-440.
doi: 10.1038/ni.3385 pmid: 26901150
[13] Porstner M, Winkelmann R, Daum P, et al. MiR-148a promotes plasma cell differentiation and targets the germinal center transcription factors Mitf and Bach2. European Journal of Immunology, 2015, 45(4):1206-1215.
doi: 10.1002/eji.201444637 pmid: 25678371
[14] Meinzinger J, Jäck H M, Pracht K. MiRNA meets plasma cells “How tiny RNAs control antibody responses”. Clinical Immunology (Orlando, Fla), 2018, 186:3-8.
doi: 10.1016/j.clim.2017.07.015
[15] Jasinski-Bergner S, Reches A, Stoehr C, et al. Identification of novel microRNAs regulating HLA-G expression and investigating their clinical relevance in renal cell carcinoma. Oncotarget, 2016, 7(18):26866-26878.
doi: 10.18632/oncotarget.8567 pmid: 27057628
[16] Tao S F, He H F, Chen Q, et al. GPER mediated estradiol reduces miR-148a to promote HLA-G expression in breast cancer. Biochemical and Biophysical Research Communications, 2014, 451(1):74-78.
doi: 10.1016/j.bbrc.2014.07.073
[17] Guan Z Z, Song B T, Liu F J, et al. TGF-β induces HLA-G expression through inhibiting miR-152 in gastric cancer cells. Journal of Biomedical Science, 2015, 22:107.
doi: 10.1186/s12929-015-0177-4
[18] Giri B R, Cheng G F. Host miR-148 regulates a macrophage-mediated immune response during Schistosoma japonicum infection. International Journal for Parasitology, 2019, 49(13-14):993-997.
doi: 10.1016/j.ijpara.2019.08.002
[19] Liu X G, Zhan Z Z, Xu L, et al. MicroRNA-148/152 impair innate response and antigen presentation of TLR-triggered dendritic cells by targeting CaMKIIα. The Journal of Immunology, 2010, 185(12):7244-7251.
doi: 10.4049/jimmunol.1001573
[20] Fang Y, Xu X Y, Shen Y B, et al. MiR-148 targets CiGadd45ba and CiGadd45bb to modulate the inflammatory response to bacterial infection in grass carp. Developmental & Comparative Immunology, 2020, 106:103611.
[21] Hanoun N, Delpu Y, Suriawinata A A, et al. The silencing of microRNA 148a production by DNA hypermethylation is an early event in pancreatic carcinogenesis. Clinical Chemistry, 2010, 56(7):1107-1118.
doi: 10.1373/clinchem.2010.144709 pmid: 20431052
[22] Zhu A, Xia J Z, Zuo J B, et al. MicroRNA-148a is silenced by hypermethylation and interacts with DNA methyltransferase 1 in gastric cancer. Medical Oncology, 2012, 29(4):2701-2709.
doi: 10.1007/s12032-011-0134-3
[23] Ragusa M, Majorana A, Banelli B, et al. MIR152, MIR200B, and MIR338, human positional and functional neuroblastoma candidates, are involved in neuroblast differentiation and apoptosis. Journal of Molecular Medicine, 2010, 88(10):1041-1053.
doi: 10.1007/s00109-010-0643-0 pmid: 20574809
[24] Cai Q, Zhu A D, Gong L. Exosomes of glioma cells deliver miR-148a to promote proliferation and metastasis of glioblastoma via targeting CADM1. Bulletin Du Cancer, 2018, 105(7-8):643-651.
doi: 10.1016/j.bulcan.2018.05.003
[25] Lang T, Nie Y L. MiR-148a participates in the growth of RPMI8226 multiple myeloma cells by regulating CDKN1B. Biomedicine & Pharmacotherapy, 2016, 84:1967-1971.
doi: 10.1016/j.biopha.2016.11.002
[26] Takahashi M, Cuatrecasas M, Balaguer F, et al. The clinical significance of miR-148a as a predictive biomarker in patients with advanced colorectal cancer. PLoS One, 2012, 7(10):e46684.
doi: 10.1371/journal.pone.0046684
[27] Reif S, Elbaum-Shiff Y, Koroukhov N, et al. Cow and human milk-derived exosomes ameliorate colitis in DSS murine model. Nutrients, 2020, 12(9):2589.
doi: 10.3390/nu12092589
[28] Chen X, Bo L H, Lu W, et al. MicroRNA-148b targets Rho-associated protein kinase 1 to inhibit cell proliferation, migration and invasion in hepatocellular carcinoma. Molecular Medicine Reports, 2016, 13(1):477-482.
doi: 10.3892/mmr.2015.4500
[29] Liffers S T, Munding J B, Vogt M, et al. MicroRNA-148a is down-regulated in human pancreatic ductal adenocarcinomas and regulates cell survival by targeting CDC25B. Laboratory Investigation, 2011, 91(10):1472-1479.
doi: 10.1038/labinvest.2011.99 pmid: 21709669
[30] Zhang B X, Yu T, Yu Z, et al. MicroRNA-148a regulates the MAPK/ERK signaling pathway and suppresses the development of esophagus squamous cell carcinoma via targeting MAP3K9. European Review for Medical and Pharmacological Sciences, 2019, 23(15):6497-6504.
doi: 18533 pmid: 31378889
[31] Luo Q, Li W, Zhao T, et al. Role of miR-148a in cutaneous squamous cell carcinoma by repression of MAPK pathway. Archives of Biochemistry and Biophysics, 2015, 583:47-54.
doi: 10.1016/j.abb.2015.07.022
[32] Li L, Chen Y Y, Li S Q, et al. Expression of miR-148/152 family as potential biomarkers in non-small-cell lung cancer. Medical Science Monitor, 2015, 21:1155-1161.
doi: 10.12659/MSM.892940 pmid: 25904302
[33] Yang J S, Li B J, Lu H W, et al. Serum miR-152, miR-148a, miR-148b, and miR-21 as novel biomarkers in non-small cell lung cancer screening. Tumor Biology, 2015, 36(4):3035-3042.
doi: 10.1007/s13277-014-2938-1
[34] 许超, 曾劲韬, 黄良祥, 等. 血清外泌体miR-148a联合miR-106a检测用于胃癌筛查的研究探讨. 中国肿瘤临床, 2020, 47(13):655-660.
Xu C, Zeng J T, Huang L X, et al. Detection of serum exosomal miR-148a combined with miR-106a in screening for gastric cancer. Chinese Journal of Clinical Oncology, 2020, 47(13):655-660.
[35] Dong L, Li H W, Zhang S L, et al. MiR-148 family members are putative biomarkers for Sepsis. Molecular Medicine Reports, 2019, 19(6):5133-5141.
doi: 10.3892/mmr.2019.10174 pmid: 31059023
[36] Mirzaei H, Gholamin S, Shahidsales S, et al. MicroRNAs as potential diagnostic and prognostic biomarkers in melanoma. European Journal of Cancer, 2016, 53:25-32.
doi: 10.1016/j.ejca.2015.10.009
[37] Heo M J, Kim Y M, Koo J H, et al. MicroRNA-148a dysregulation discriminates poor prognosis of hepatocellular carcinoma in association with USP4 overexpression. Oncotarget, 2014, 5(9):2792-2806.
doi: 10.18632/oncotarget.v5i9
[38] Hummel R, Hussey D J, Michael M Z, et al. MiRNAs and their association with locoregional staging and survival following surgery for esophageal carcinoma. Annals of Surgical Oncology, 2011, 18(1):253-260.
doi: 10.1245/s10434-010-1213-y
[39] Xu T J, Qiu P, Zhang Y B, et al. MiR-148a inhibits the proliferation and migration of glioblastoma by targeting ITGA9. Human Cell, 2019, 32(4):548-556.
doi: 10.1007/s13577-019-00279-9
[40] Liu Q J, Feng X J, Zhang W, et al. MiR-148a-3p overexpression contributes to glomerular cell proliferation by targeting PTEN in lupus nephritis. American Journal of Physiology Cell Physiology, 2016, 310(6):C470-C478.
doi: 10.1152/ajpcell.00129.2015
[41] Fujita Y, Kojima K, Ohhashi R, et al. MiR-148a attenuates paclitaxel resistance of hormone-refractory, drug-resistant prostate cancer PC3 cells by regulating MSK1 expression. Journal of Biological Chemistry, 2010, 285(25):19076-19084.
doi: 10.1074/jbc.M109.079525
[42] Feng F, Liu H, Chen A P, et al. MiR-148-3p and miR-152-3p synergistically regulate prostate cancer progression via repressing KLF4. Journal of Cellular Biochemistry, 2019, 120(10):17228-17239.
doi: 10.1002/jcb.28984 pmid: 31104329
[43] Cao H Y, Liu Z M, Wang R, et al. MiR-148a suppresses human renal cell carcinoma malignancy by targeting AKT2. Oncology Reports, 2017, 37(1):147-154.
doi: 10.3892/or.2016.5257
[44] Wang S H, Li X, Zhou L S, et al. MicroRNA-148a suppresses human gastric cancer cell metastasis by reversing epithelial-to-mesenchymal transition. Tumor Biology, 2013, 34(6):3705-3712.
doi: 10.1007/s13277-013-0954-1
[45] Xu X J, Fan Z Y, Kang L, et al. Hepatitis B virus X protein represses miRNA-148a to enhance tumorigenesis. The Journal of Clinical Investigation, 2013, 123(2):630-645.
[46] Zhang J P, Zeng C, Xu L, et al. MicroRNA-148a suppresses the epithelial-mesenchymal transition and metastasis of hepatoma cells by targeting Met/Snail signaling. Oncogene, 2014, 33(31):4069-4076.
doi: 10.1038/onc.2013.369 pmid: 24013226
[47] Zhang R, Li M, Zang W Q, et al. MiR-148a regulates the growth and apoptosis in pancreatic cancer by targeting CCKBR and Bcl-2. Tumor Biology, 2014, 35(1):837-844.
doi: 10.1007/s13277-013-1115-2
[48] Murata T, Takayama K, Katayama S, et al. MiR-148a is an androgen-responsive microRNA that promotes LNCaP prostate cell growth by repressing its target CAND1 expression. Prostate Cancer and Prostatic Diseases, 2010, 13(4):356-361.
doi: 10.1038/pcan.2010.32 pmid: 20820187
[49] Li Y T, Chen F Y, Chu J C, et al. MiR-148-3p inhibits growth of glioblastoma targeting DNA methyltransferase-1 (DNMT1). Oncology Research, 2019, 27(8):911-921.
doi: 10.3727/096504019X15516966905337
[50] Qin L M, Chen Y S, Niu Y N, et al. A deep investigation into the adipogenesis mechanism: profile of microRNAs regulating adipogenesis by modulating the canonical Wnt/beta-catenin signaling pathway. BMC Genomics, 2010, 11:320.
doi: 10.1186/1471-2164-11-320
[51] Shi C M, Zhang M, Tong M L, et al. MiR-148a is associated with obesity and modulates adipocyte differentiation of mesenchymal stem cells through wnt signaling. Scientific Reports, 2015, 5:9930.
doi: 10.1038/srep09930
[52] Li G X, Li Y J, Li X J, et al. MicroRNA identity and abundance in developing swine adipose tissue as determined by Solexa sequencing. Journal of Cellular Biochemistry, 2011, 112(5):1318-1328.
doi: 10.1002/jcb.v112.5
[53] Tian L J, Zheng F, Li Z J, et al. MiR-148a-3p regulates adipocyte and osteoblast differentiation by targeting lysine-specific demethylase 6b. Gene, 2017, 627:32-39.
doi: 10.1016/j.gene.2017.06.002
[54] Ross S E, Hemati N, Longo K A, et al. Inhibition of adipogenesis by Wnt signaling. Science, 2000, 289(5481):950-953.
pmid: 10937998
[55] Wijnen A J, Peppel J, Leeuwen J P, et al. MicroRNA functions in osteogenesis and dysfunctions in osteoporosis. Current Osteoporosis Reports, 2013, 11(2):72-82.
doi: 10.1007/s11914-013-0143-6 pmid: 23605904
[56] He H B, Cai M C, Zhu J Y, et al. MiR-148a-3p promotes rabbit preadipocyte differentiation by targeting PTEN. In Vitro Cellular & Developmental Biology - Animal, 2018, 54(3):241-249.
[57] Yin H D, He H R, Cao X N, et al. MiR-148a-3p regulates skeletal muscle satellite cell differentiation and apoptosis via the PI3K/AKT signaling pathway by targeting Meox2. Frontiers in Genetics, 2020, 11:512.
doi: 10.3389/fgene.2020.00512
[58] Song C C, Yang J M, Jiang R, et al. MiR-148a-3p regulates proliferation and apoptosis of bovine muscle cells by targeting KLF6. Journal of Cellular Physiology, 2019, 234(9):15742-15750.
doi: 10.1002/jcp.v234.9
[59] Gailhouste L, Gomez-Santos L, Hagiwara K, et al. MiR-148a plays a pivotal role in the liver by promoting the hepatospecific phenotype and suppressing the invasiveness of transformed cells. Hepatology (Baltimore, Md), 2013, 58(3):1153-1165.
doi: 10.1002/hep.v58.3
[60] Jiang C K, Gong F. Regulation and mechanism of miR-148a on cardiomyocyte differentiation induced by 5-aza in mesenchymal stem cells. Chinese Journal of Applied Physiology, 2017, 33(6):514-518.
[61] Jiang C K, Gong F. MiR-148a promotes myocardial differentiation of human bone mesenchymal stromal cells via DNA methyltransferase 1 (DNMT1). Cell Biology International, 2018, 42(8):913-922.
doi: 10.1002/cbin.v42.8
[1] 李开秀,司维. 间充质干细胞来源的外泌体治疗炎症性肠病研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 66-73.
[2] 吕慧中,赵晨辰,朱链,许娜. 外泌体靶向递药在肿瘤治疗中的进展[J]. 中国生物工程杂志, 2021, 41(5): 79-86.
[3] 赵久梅,王哲,李学英. 调控软骨形成的信号通路及相关因子在骨髓间充质干细胞骨向分化中的作用*[J]. 中国生物工程杂志, 2021, 41(10): 62-72.
[4] 吴忧,辛林. 新的药物传递系统:外泌体作为药物载体递送*[J]. 中国生物工程杂志, 2020, 40(9): 28-35.
[5] 邱金戈,刘德武,孙宝丽,李耀坤,郭勇庆,邓铭,柳广斌. 动物外泌体分离方法的研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 36-42.
[6] 苑亚坤,刘广洋,刘拥军,谢亚芳,吴昊. 间充质干细胞基础研究与临床转化的中美比较[J]. 中国生物工程杂志, 2020, 40(4): 97-107.
[7] 毛慧,吕玉华,朱丽慧,林月霞,廖荣荣. 外泌体在病毒感染诊断和治疗中的作用研究 *[J]. 中国生物工程杂志, 2020, 40(3): 104-110.
[8] 吴佳韩,江霖,陈婷,孙加节,张永亮,习欠云. 脂肪组织外泌体与机体其他组织互作研究进展 *[J]. 中国生物工程杂志, 2020, 40(3): 111-116.
[9] 陈利军,屈晶晶,项春生. 间充质干细胞在2019新型冠状病毒肺炎(COVID-19)中的治疗潜能、临床研究与应用前景*[J]. 中国生物工程杂志, 2020, 40(11): 43-55.
[10] 朱永朝,陶金,任萌萌,熊燃,何亚琴,周瑜,卢震辉,杜勇,杨芝红. 自噬抑制肿瘤坏死因子α诱导人胎盘胎儿来源间充质干细胞发生凋亡 *[J]. 中国生物工程杂志, 2019, 39(9): 62-67.
[11] 杭海英,刘春春,任丹丹. 流式细胞术的发展、应用及前景 *[J]. 中国生物工程杂志, 2019, 39(9): 68-83.
[12] 刘艳,戴鹏,朱运峰. 外泌体作为肿瘤标志物的研究进展 *[J]. 中国生物工程杂志, 2019, 39(8): 74-79.
[13] 刘艳,戴鹏,朱运峰. 外泌体与自噬体相互关系研究进展 *[J]. 中国生物工程杂志, 2019, 39(6): 78-83.
[14] 姬凯茜,焦丹,谢忠奎,杨果,段子渊. 棕色脂肪细胞特异基因PRDM16的研究进展与展望 *[J]. 中国生物工程杂志, 2019, 39(4): 84-93.
[15] 施文雯,张蕾. 力学微环境影响间充质干细胞分化的研究现状 *[J]. 中国生物工程杂志, 2018, 38(8): 76-83.