Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2016, Vol. 36 Issue (10): 72-78    DOI: 10.13523/j.cb.20161010
CRISPR专栏     
CRISPR-Cas9研究进展及在基因治疗上的应用
刘瑞琪, 王玮玮, 吴勇延, 赵秋云, 王勇胜, 卿素珠
西北农林科技大学动物医学院 杨凌 712100
Research Progress of CRISPR-Cas9 and Its Application in Gene Therapy
LIU Rui-qi, WANG Wei-wei, WU Yong-yan, ZHAO Qiu-yun, WANG Yong-sheng, QING Su-zhu
College of Veterinary Medicine, Northwest A & F University, Yangling 712100, China
 全文: PDF(466 KB)   HTML
摘要:

CRISPR-Cas9[Clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR-associated (Cas)9]是近年兴起的一种高特异性和高效的基因编辑新技术,由向导RNA(single guide RNA,sgRNA)和cas9(CRISPR-associated 9)蛋白组成,引起DNA位点特异性双链断裂(double-strand breaks,DSBs),引发同源重组修复(homology-directed repair,HDR)或非同源末端连接修复(non-homologous end joining,NHEJ),达到靶基因修饰的作用。CRISPR-Cas9技术自发现以来,因其便于操作、花费较低、高特异性、可同时打靶任意数量基因等优点而被应用。近年研究显示,对于一些遗传性疾病,可通过CRISPR-Cas9精确的基因编辑破坏致病的内源基因、改正引起疾病的突变体或插入新的保护性基因进行治疗,该技术为基因治疗开启了一个新方向。主要从CRISPR-Cas9结构、作用机制及在疾病基因治疗上的应用等方面进行了综述。

关键词: 基因编辑CRISPR-Cas9基因治疗    
Abstract:

CRISPR-Cas9 is a novel highly specific and efficient technology of genome editing. CRISPR-Cas9 system consists of single guide RNA (sgRNA) and Cas9 protein, it can produce site-specific DNA double-strand breaks (DSBs), then induces the repair of nonhomologous end-joining (NHEJ) or homology-directed repair (HDR) that gives rise to targeted genome modifications. Since its discovery, with its several advantages of easy operation, low cost, high efficiency and simultaneous targeting of arbitrary number of gene and so on, it has been widely applied. Recent researches show that the genome editing of CRISPR-Cas9 provides a new direction for gene therapy, through accurate disruption of causative endogenous gene or correction of the causative mutation or insertion of a new protective gene.The structure and the mechanism of CRISPR-Cas9, and also its gene therapy in diseases were reviewed and highlighted.

Key words: Genome editing    Gene therapy    CRISPR-Cas9
收稿日期: 2016-03-24 出版日期: 2016-10-25
ZTFLH:  Q819  
基金资助:

陕西省农业科技创新与攻关项目资助项目(2014K02-05-01)

通讯作者: 卿素珠,电子信箱:suzhuqing@163.com     E-mail: suzhuqing@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

刘瑞琪, 王玮玮, 吴勇延, 赵秋云, 王勇胜, 卿素珠. CRISPR-Cas9研究进展及在基因治疗上的应用[J]. 中国生物工程杂志, 2016, 36(10): 72-78.

LIU Rui-qi, WANG Wei-wei, WU Yong-yan, ZHAO Qiu-yun, WANG Yong-sheng, QING Su-zhu. Research Progress of CRISPR-Cas9 and Its Application in Gene Therapy. China Biotechnology, 2016, 36(10): 72-78.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20161010        https://manu60.magtech.com.cn/biotech/CN/Y2016/V36/I10/72

[1] 毛超, 陶永光. 基因组编辑技术研究新进展. 生命的化学, 2015, 35(1): 96-104. Mao C, Tao Y G. Current progress of genome editing techniques. Chemistry of Life, 2015, 35(1): 96-104.
[2] Gaj T, Gersbach C A, Barbas C F. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology, 2013, 31(7): 397-405.
[3] Ishino Y, Shinagawa H, Makino K, et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Bacteriol, 1987, 169(12): 5429-5433.
[4] Mojica F J, Díez-Villasenor C, Soria E, et al. Biological significance of a family of regularly spaced repeats in the genomes of archaea bacteria and mitochondria. Mol Microbiol, 2000, 36: 244-246.
[5] Jansen R, Embden J D, Gaastra W, et al. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol, 2002, 43(6): 1565-1575.
[6] Mojica F J, Díez-Villasenor C, Garc?a-Mart?nez J, et al. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol, 2005, 60(2): 174-182.
[7] Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science, 2007, 315(5819): 1709-1712.
[8] Cong L, Ran F A, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121): 819-823.
[9] 李辉, 施振旦. CRISPR/Cas9新型基因打靶系统的研究进展. 江苏农业学报. 2013, 29(4): 907-911. Li H, Shi Z D. Research progress of gene targeting technology of CRISPR/Cas9 system. Jiangsu J of Agr Sci. 2013, 29(4): 907-911.
[10] Makarova K S, Haft D H, Barrangou R, et al. Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol, 2011, 9: 467-477.
[11] Nishimasu H, Ran F A, Hsu P D, et al. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell, 2014, 156 (5): 935-949.
[12] Deltcheva E, Chylinski K, Sharma C M, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase Ⅲ. Nature, 2011, 471: 602-607.
[13] Anders C, Niewoehner O, Duerst A, et al. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature, 2014, 513(13578): 569-573.
[14] Ran F A, Hsu P D, Wright J, et al. Genome engineering using the CRISPR-Cas9 system. Nature Protocols, 2013, 8(11): 2281-2308.
[15] Mali P, Luhan Y, Esvelt K M, et al. RNA-guided human genome engineering via Cas9. Science, 2013, 339(6121): 823-826.
[16] Doudna J A, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science, 2014, 346(6213): 1258096-1-1258096-9.
[17] Ran F A, Hsu P D, Lin C Y, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 2013, 154: 1380-1389.
[18] Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337: 816-821.
[19] Shah S A, Erdmann S, Mojica F J, et al. Protospacer recognition motifs: mixed identities and functional diversity. RNA Biol, 2013, 10(5): 891-899.
[20] Sternberg S H, Redding S, Jinek M, et al. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature, 2014, 507(7490): 62-67.
[21] Jiang F, Taylor D W, Chen J S, et al. Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science, 2016, 351(6275): 867-871.
[22] Szczelkun M D, Tikhomirova M S, Sinkunas T, et al. Direct observation of R-loop formation by single RNA-guided Cas9 and cascade effector complexes. Proc Natl Acad Sci USA, 2014, 111(27): 9798-9803.
[23] Sander J D, Joung J K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nature Biotechnology, 2014, 32: 347-355.
[24] Saleh-Gohari N, Helleday T. Conservative homologous recombination preferentially repairs DNA double-strand breaks in the S phase of the cell cycle in human cells. Nucleic Acids Res, 2004, 32: 3683-3688.
[25] Sander J D, Joung J K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol, 2014, 32: 347-355.
[26] 周金伟, 徐绮嫔, 姚婧, 等. CRISPR/Cas9基因组编辑技术及其在动物基因组定点修饰中的应用. 遗传, 2015, 37(10): 1011-1020. Zhou J W, Xu Q B, Yao J, et al. CRISPR/Cas CRISPR/Cas9 genome editing technique and its application in site-directed genome modification of animals. Hereditas, 2015, 37(10): 1262-1278.
[27] Xue H Y, Zhang X, Wang Y, et al. In vivo gene therapy potentials of CRISPR-Cas9. Gene Ther, 2016, 23: 557-559.
[28] Hsu P D, Lander E S, and Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell, 2014, 157: 1262-1278.
[29] Horri T, Tamura D, Morita S, et al. Generation of an ICF syndrome model by efficient genome editing of human induced pluripotent stem cells using the CRISPR System. Int J Mol Sci, 2013, 14: 19774-19781.
[30] Ebina H, Misawa N, Kanemura Y, et al. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci Rep, 2013, 3: 2510-2534.
[31] Hu W, Kaminski R, Yang F, et al. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proc Natl Acad Sci USA, 2014, 111(31): 11461-11466.
[32] Horii T, Tamura D, Morita S, et al. Generation of an ICF syndrome model by efficient genome editing of human induced pluripotent stem cells using the CRISPR system. Int J Mol Sci, 2013, 14(10): 19774-19781.
[33] Xie F, Ye L, Chang J C, et al. Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Res, 2014, 24(9): 1526-1533.
[34] 刘超, 李志伟, 张艳桥. CRISPR/Cas9基因编辑系统在肿瘤研究中的应用进展. 中国肺癌杂志. 2015, 9(18): 571-579. Liu C, Li Z W, Zhang Y Q. Application progress of CRISPR/Cas9 system for gene editing in tumor research. Chin J Lung Cancer, 2015, 9(18): 571-579.
[35] Chen C, Yu L, Rappaport A R, et al. MLL3 is a haploinsufficient 7q tumor Suppressor in acute myeloid leukemia. Cancer Cell, 2014, 25(5): 652-665.
[36] Zhen S, Hua L, Takahashi Y, et al. In vitro and in vivo growth suppression of human papillomavirus 16-positive cervical cancer cells by CRISPR/Cas9. Biochem Biophys Res Commun, 2014, 450(4): 14422-14426.
[37] Koenig M, Hoffman E P, Bertelson C J, et al. Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell, 1987, 50(3):509-517.
[38] Tabebordbar M, Zhu K, Cheng J K, et al. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science, 2016, 351(6271): 407-411.
[39] Nelson C E, Hakim C H, Ousterout D G, et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science, 2016,351: 403-407.
[40] Long C, Amoasii L, Mireault A A, et al. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science, 2016,351: 400-403.
[41] 郑武, 谷峰. CRISPR/Cas9的应用及脱靶效应研究进展. 遗传, 2015, 37(10): 1003-1010. Zheng G, Gu F. Progress of application and off-target effects of CRISPR/Cas9. Hereditas, 2015, 37(10): 1003-1010.
[42] Fu Y F, Foden J A, Khayter C, et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol, 2013, 31(9): 822-826.
[43] Tsai S Q, Zheng Z, Nguyen N T, et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol, 2015,33: 187-197.
[44] Kim D, Bae S, Park J, et al. Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat Methods, 2015, 12:237-243.
[45] Cho S W, Kim S, Kim Y, et al. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res, 2014, 24(1): 132-141.
[46] Fu Y F, Sander J D, Reyon D, et al. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol, 2014, 32(3): 279-284.
[47] Doench J G, Fusi N, Sullender M, et al.Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol, 2016,34: 184-191.
[48] Ran F A, Hsu P D, Lin C Y, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 2013, 154(6): 1380-1389.
[49] Kleinstiver B P, Pattanayak V, Prew M S, et al. Highfidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature,2016,529: 490-495.
[50] Feng Z, Yan W, Xiong G.CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum Mol Genet, 2014, 23: 40-46.
[51] Bernd Z, Jonathan S G, Omar O A, et al. Cpfl is a single RNA-guided endonuclease of a Class 2 CRISPR-Cas system. Cell, 2015, 163:1-13.

[1] 赵晓煜,徐祺玲,赵晓东,安云飞. 基因治疗慢病毒载体的转导增强策略*[J]. 中国生物工程杂志, 2021, 41(8): 52-58.
[2] 胡暄,王松,于学玲,张晓鹏. 不稳定EGFP细胞模型的构建及其在基因编辑体系评价中的应用*[J]. 中国生物工程杂志, 2021, 41(5): 17-26.
[3] 王艳梅,寇航,马梅,申玉玉,赵宝顶,路福平,黎明. 利用CRISPR-Cas9技术失活黑曲霉中果胶酶基因及突变株性能评价*[J]. 中国生物工程杂志, 2021, 41(5): 35-44.
[4] 冷燕,孙康泰,刘倩倩,蒲阿庆,李翔,万向元,魏珣. 全球基因编辑作物监管趋势研究[J]. 中国生物工程杂志, 2021, 41(12): 24-29.
[5] 樊斌,陈欢,宋婉莹,陈光,王刚. 乳酸菌基因改造技术研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 84-92.
[6] 王伟东,杜加茹,张运尚,樊剑鸣. CRISPR/Cas9在人病毒感染相关疾病治疗研究中的应用*[J]. 中国生物工程杂志, 2020, 40(12): 18-24.
[7] 王玥,牟彦双,刘忠华. 基于CRISPR/Cas系统的单碱基编辑技术研究进展*[J]. 中国生物工程杂志, 2020, 40(12): 58-66.
[8] 徐应永. 基因治疗产品的开发现状与挑战[J]. 中国生物工程杂志, 2020, 40(12): 95-103.
[9] 陈庆宇,王鲜忠,张姣姣. 基因技术在治疗2型糖尿病中的应用*[J]. 中国生物工程杂志, 2020, 40(11): 73-81.
[10] 何秀娟,胡凤枝,刘秋丽,刘玉萍,祝玲,郑文云. 乳腺癌细胞QSOX1的CRISPR/Cas9基因编辑及其对增殖侵袭的影响研究*[J]. 中国生物工程杂志, 2020, 40(11): 1-9.
[11] 王志敏,毕美玉,贺佳福,任炳旭,刘东军. CRISPR/Cas9系统的发展及其在动物基因编辑中的应用 *[J]. 中国生物工程杂志, 2020, 40(10): 43-50.
[12] 杨春艳,王磊,穆登彩,李芳芳,沈昊,郑尚永. 基因编辑技术在疾病治疗中的研究进展 *[J]. 中国生物工程杂志, 2019, 39(11): 87-95.
[13] 陆海燕,李佳蔓,孙思凡,章小毛,丁娟娟,邹少兰. CRISPR - Cas9系统介导的工业酵母营养缺陷型菌株构建 *[J]. 中国生物工程杂志, 2019, 39(10): 67-74.
[14] 韩亚丽,杨冠恒,陈雁雯,龚秀丽,张敬之. 表达β-珠蛋白基因的安全性慢病毒载体的优化 *[J]. 中国生物工程杂志, 2018, 38(7): 50-57.
[15] 徐然,陈松. CRISPR/Cas9运输系统的研究进展及其在基因相关疾病方面的应用 *[J]. 中国生物工程杂志, 2018, 38(3): 81-88.