Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (11): 73-81    DOI: 10.13523/j.cb.2006040
综述     
基因技术在治疗2型糖尿病中的应用*
陈庆宇,王鲜忠,张姣姣()
西南大学动物医学院 重庆 400715
Application of Gene Technology in the Treatment of Type 2 Diabetes Mellitus
CHEN Qing-yu,WANG Xian-zhong,ZHANG Jiao-jiao()
College of Veterinary Medicine, Southwest University, Chongqing 400715, China
 全文: PDF(475 KB)   HTML
摘要:

2型糖尿病(type 2 diabetes mellitus, T2DM)是一类由于胰岛β细胞损伤和机体对胰岛素耐受引发的慢性代谢性疾病,其快速增长的患病率和并发症所带来的高病死率已成为人类面临的医学难题。目前,T2DM主要是以降糖药物及胰岛素增敏剂等药物进行治疗,但是这类药物会产生严重的副作用,而且不能长期良好控制血糖和防止各种慢性并发症。因此,基因治疗是未来医疗发展的主要方向。基因治疗不仅可以靶向调控血糖水平进而提高降糖的效果,而且能够减少糖代谢异常引起的并发症,保护组织器官免受损伤。在认识传统药物治疗糖尿病的基础上,综述了基因技术在治疗T2DM中的应用,讨论了基因技术治疗T2DM的意义及存在的问题。基因技术的应用不仅有利于T2DM的预防和个体化治疗,同时也为糖尿病并发症提供了新的治疗途径。

关键词: 2型糖尿病药物治疗基因治疗病毒载体CRISPR    
Abstract:

Type 2 diabetes mellitus (T2DM) is a kind of chronic metabolic disease caused by β-cell damage and insulin tolerance. The rapid growth of its morbidity and high mortality caused by complications has become a medical problem. At present, T2DM is mainly treated with hypoglycemic drugs and insulin sensitizers, but these drugs will have serious side effects. And these drugs can’t control blood glucose and prevent various chronic complications for a long time. Therefore, gene therapy is the main direction of future medical development. Gene therapy can not only target to regulate blood glucose level and improve the effect of lowering blood glucose, but also reduce the complications caused by abnormal glucose metabolism and protect tissues and organs from damage. Based on the understanding of traditional medicine in the treatment of diabetes, the effect and advantages of gene technology in the treatment of T2DM are reviewed, which is not only conducive to the prevention and individualized treatment of T2DM, but also provides a new treatment for diabetic complications.

Key words: T2DM    Drug therapy    Gene therapy    Viral vectors    CRISPR
收稿日期: 2020-06-23 出版日期: 2020-12-11
ZTFLH:  Q78  
基金资助: * 重庆市自然科学基金面上项目(cstc2019jcyj-msxmX0056);中央高校基本科研业务费专项资金(SWU019002);重庆市高等教育教学改革研究项目(203259)
通讯作者: 张姣姣     E-mail: zhangjjff@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈庆宇
王鲜忠
张姣姣

引用本文:

陈庆宇,王鲜忠,张姣姣. 基因技术在治疗2型糖尿病中的应用*[J]. 中国生物工程杂志, 2020, 40(11): 73-81.

CHEN Qing-yu,WANG Xian-zhong,ZHANG Jiao-jiao. Application of Gene Technology in the Treatment of Type 2 Diabetes Mellitus. China Biotechnology, 2020, 40(11): 73-81.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2006040        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I11/73

类别 常用药物 适应证 用药方式 作用机制 优缺点
胰岛素及胰岛素类似物 诺和锐、诺和灵N、诺和平 T1DM、治疗效果不佳的T2DM 皮下注射、
口服
与受体结合后促进葡萄糖的摄取和利用,并抑制糖原分解和异生 优点:用于日常基础控制血糖
缺点:治疗过程中需进行血糖监测避免不良反应
双胍类 盐酸二甲双胍 单纯饮食控制不满意的T2DM 口服 减少肝脏葡萄糖的输出,恢复胰岛素对腺苷环化酶的抑制,促进糖无氧酵解;改善外周胰岛素抵抗,抑制肠道对葡萄糖的吸收和肝糖输出;改善胰岛素敏感性而降低血糖 优点:可全程联合其他药物进行治疗,治疗首选药
缺点:会有胃肠道反应,需先从小剂量开始用药,形成耐受;长期使用者应注意维生素B12缺乏的可能性
磺脲类促泌药 格列喹酮、格列美脲 非肥胖
T2DM患者
口服 作用于胰岛β细胞的K+-ATP通道,使K+外流受限,Ca2+内流刺激胰岛素释放,增加体内胰岛素水平进而降低血糖;直接刺激胰岛β细胞分泌胰岛素 优点:可作口服降糖药,对患者而言更加方便,与糖尿病微血管病变和大血管病变发生的风险下降有关
缺点:使用不当会导致低血糖,尤其是在老年患者和肝、肾功能不全者,会导致体重增加
非磺脲类促泌药 瑞格列奈、那格列奈 T2DM 口服 直接刺激胰岛β细胞分泌胰岛素;刺激胰岛素早时相分泌,降低餐后血糖水平,保护胰岛细胞 优点:导致低血糖的风险,但程度较磺脲类药物轻;肾功能不全的患者可使用
缺点:会导致低血糖和体重增加
α-葡糖苷酶抑制药 阿卡波糖 以碳水化合物为主食的糖尿病患者 口服 竞争性与小肠刷状缘α-葡糖苷酶结合,抑制α-葡糖苷酶活性;延缓肠道对葡萄糖的吸收 优点:使用剂量比达到同等疗效的二甲双胍少;单独服用不会发生低血糖
缺点:胃肠道反应
TZD 曲格列酮、罗格列酮、吡格列酮、环格列酮 T2DM 口服 增加靶细胞对胰岛素作用的敏感性而降低血糖;作用于细胞核的过氧化物酶体增殖体活化受体,减少胰岛素抵抗,增加脂肪细胞、肌肉和肝中胰岛素的敏感性,提高外周组织的糖利用度,抑制肝糖原生成 优点:可使糖化血红蛋白下降0.7%~1.0%
缺点:单独使用不导致低血糖,但与胰岛素联用可增加低血糖发生的风险;该药的使用与骨折和心力衰竭风险增加有关;会导致体重增加和水肿
GLP-1受体激动药 艾塞那肽、利拉鲁肽、贝那鲁肽、利司那肽、艾塞那肽周制剂 T2DM 皮下注射 与GLP-1受体结合后,一方面刺激胰岛素分泌,另一方面减少胰高血糖素的分泌,进而降低血糖浓度 优点:显著降低三酰甘油水平、血压和体重;单独使用不明显增加低血糖发生的风险;口服降糖药治疗失败后用GLP-1有效
缺点:患者对该药物的活性成分有过敏风险
DPP-4抑制药 西格列汀、沙格列汀、维格列汀、利格列汀、阿格列汀 T2DM 口服 减少体内GLP-1的分解,增加GLP-1浓度从而促进胰岛β细胞分泌胰岛素;改善胰岛β细胞敏感性,促进胰岛素分泌;抑制胰岛α细胞分泌胰高血糖素 优点:单独使用不增加低血糖和心血管病发生的风险,肝、肾功能不全的患者可以使用
缺点:该类药物价格较高,仅有少数患者能够承担
表1  治疗糖尿病的常用药物
基因技术方法 分类 优点 缺点
病毒载体技术 慢病毒载体 基因转染效率较高,可携带较大的T2DM相关基因片段,对细胞周期没有特别要求 生物安全性较差,携带较大基因片段时病毒滴度低
腺病毒载体 病毒滴度高,转染T2DM相关基因的能力较强,不整合到宿主基因组 引起动物机体发生强烈的免疫和炎症反应
腺相关病毒载体 低致命性、低免疫原性、宿主范围广、稳定表达,适用于长期T2DM相关基因矫正,生物安全性较高 引起动物机体轻微的免疫反应
非病毒载体技术 干细胞治疗 极强的自我更新能力,多向分化为胰岛β细胞,分泌多种T2DM治疗性细胞因子 免疫排斥反应,缺血缺氧等非免疫因素
再分化 祖细胞再分化为胰岛β细胞,从根源上治疗糖尿病 再分化诱导条件未明确,再分化效率较低,去分化过程中基因组易发生突变导致细胞内致癌风险增高
CRISPR/Cas9 对T2DM相关基因高精度修饰和调控,纠正糖尿病单一致病基因 难度较高,脱靶率高,转导效率低
表2  基因技术治疗糖尿病的优缺点
[1] Zhu W, Huang W, Xu Z Q, et al. Analysis of patents issued in China for antihyperglycemic therapies for type 2 diabetes mellitus. Frontiers in Pharmacology, 2019,10:586.
doi: 10.3389/fphar.2019.00586 pmid: 31214029
[2] Zang L, Hao H, Liu J, et al. Mesenchymal stem cell therapy in type 2 diabetes mellitus. Diabetol Metab Syndr, 2017,9:36.
[3] Ojha A, Ojha U, Mohammed R, et al. Current perspective on the role of insulin and glucagon in the pathogenesis and treatment of type 2 diabetes mellitus. Clin Pharmacol, 2019,11:57-65.
doi: 10.2147/CPAA.S202614 pmid: 31191043
[4] Amoah A G, Owusu S K, Schuster D P, et al. Pathogenic mechanism of type 2 diabetes in Ghanaians:the importance of beta cell secretion, insulin sensitivity and glucose effectiveness. S Afr Med J, 2002,92(5):377-384.
pmid: 12108171
[5] Quan W, Jo E K, Lee M S. Role of pancreatic beta-cell death and inflammation in diabetes. Diabetes Obesity & Metabolism, 2013,15(Suppl 3):141-151.
[6] Shibata S B, West M B, Du X, et al. Gene therapy for hair cell regeneration: Review and new data. Hear Res, 2020,394:107981.
doi: 10.1016/j.heares.2020.107981 pmid: 32563621
[7] Calne R Y, Gan S U, Lee K O. Stem cell and gene therapies for diabetes mellitus. Nature Reviews Endocrinology, 2010,6(3):173-177.
doi: 10.1038/nrendo.2009.276 pmid: 20173779
[8] Liu X, Huang H, Gao Y, et al. Visualization of gene therapy with a liver cancer-targeted adeno-associated virus 3 vector. J Cancer, 2020,11(8):2192-2200.
doi: 10.7150/jca.39579 pmid: 32127946
[9] Modi P, Mihic M, Lewin A. The evolving role of oral insulin in the treatment of diabetes using a novel RapidMist System. Diabetes Metab Res Rev, 2002,18(Suppl 1):S38-42.
[10] Devendra D, Liu E, Eisenbarth G S. Type 1 diabetes: recent developments. Bmj- British Medical Journal, 2004,328(7442):750-754.
doi: 10.1136/bmj.328.7442.750 pmid: 15044291
[11] Thule P M, Liu J M. Regulated hepatic insulin gene therapy of STZ-diabetic rats. Gene Therapy, 2000,7(20):1744-1752.
[12] Davalli A M, Galbiati F, Bertuzzi F, et al. Insulin-secreting pituitary GH3 cells: a potential beta-cell surrogate for diabetes cell therapy. Cell Transplant, 2000,9(6):841-851.
doi: 10.1177/096368970000900610 pmid: 11202570
[13] Shaw J A, Delday M I, Hart A W, et al. Secretion of bioactive human insulin following plasmid-mediated gene transfer to non-neuroendocrine cell lines, primary cultures and rat skeletal muscle in vivo. J Endocrinol, 2002,172(3):653-672.
doi: 10.1677/joe.0.1720653 pmid: 11874714
[14] Keckesova Z, Ylinen L M J, Towers G J, et al. Identification of a RELIK orthologue in the European hare (Lepus europaeus) reveals a minimum age of 12 million years for the lagomorph lentiviruses. Virology, 2008,384(1):7-11.
doi: 10.1016/j.virol.2008.10.045 pmid: 19070882
[15] Parr-Brownlie L C, Bosch-Bouju C, Schoderboeck L, et al. Lentiviral vectors as tools to understand central nervous system biology in mammalian model organisms. Front Mol Neurosci, 2015,8:14.
doi: 10.3389/fnmol.2015.00014 pmid: 26041987
[16] Sakuma T, Barry M A, Ikeda Y. Lentiviral vectors: basic to translational. Biochem J, 2012,443(3):603-618.
pmid: 22507128
[17] Vranckx L S, Demeulemeester J, Debyser Z, et al. Towards a safer, more randomized lentiviral vector integration profile exploring artificial LEDGF Chimeras. PLoS One, 2016,11(10):e0164167.
doi: 10.1371/journal.pone.0164167 pmid: 27788138
[18] Lawson S K, Dobrikova E Y, Shveygert M, et al. p38α mitogen-activated protein kinase depletion and repression of signal transduction to translation machinery by miR-124 and -128 in neurons. Molecular and Cellular Biology, 2013,33(1):127-135.
doi: 10.1128/MCB.00695-12 pmid: 23109423
[19] Gouvarchin Ghaleh H E, Bolandian M, Dorostkar R, et al. Concise review on optimized methods in production and transduction of lentiviral vectors in order to facilitate immunotherapy and gene therapy. Biomed Pharmacother, 2020,128:110276.
doi: 10.1016/j.biopha.2020.110276 pmid: 32502836
[20] Janecka J E, Miller W, Pringle T H, et al. Molecular and genomic data identify the closest living relative of primates. Science, 2007,318(5851):792-794.
doi: 10.1126/science.1147555 pmid: 17975064
[21] Berkowitz R, Ilves H, Lin W Y, et al. Construction and molecular analysis of gene transfer systems derived from bovine immunodeficiency virus. J Virol, 2001,75(7):3371-3382.
doi: 10.1128/JVI.75.7.3371-3382.2001 pmid: 11238863
[22] Salmon P, Trono D. Production and titration of lentiviral vectors. Curr Protoc Hum Genet, 2007,54:12.10.1-12.10.24.
[23] Tran R, Myers D R, Denning G, et al. Microfluidic transduction harnesses mass transport principles to enhance gene transfer efficiency. Mol Ther, 2017,25(10):2372-2382.
doi: 10.1016/j.ymthe.2017.07.002 pmid: 28780274
[24] Chou F C, Sytwu H K. Overexpression of thioredoxin in islets transduced by a lentiviral vector prolongs graft survival in autoimmune diabetic NOD mice. J Biomed Sci, 2009,16(1):71.
[25] Ren B, O’Brien B A, Byrne M R, et al. Long-term reversal of diabetes in non-obese diabetic mice by liver-directed gene therapy. Journal of Gene Medicine, 2013,15(1):28-41.
pmid: 23293075
[26] Tasyurek H M, Altunbas H A, Balci M K, et al. Therapeutic potential of Lentivirus-mediated glucagon-like peptide-1 gene therapy for diabetes. Human Gene Therapy, 2018,29(7):802-815.
doi: 10.1089/hum.2017.180 pmid: 29409356
[27] Lopez-Talavera J C, Garcia-Ocana A, Sipula I, et al. Hepatocyte growth factor gene therapy for pancreatic islets in diabetes: reducing the minimal islet transplant mass required in a glucocorticoid-free rat model of allogeneic portal vein islet transplantation. Endocrinology, 2004,145(2):467-474.
doi: 10.1210/en.2003-1070 pmid: 14551233
[28] Xu R, Li H, Tse L Y, et al. Diabetes gene therapy: potential and challenges. Curr Gene Ther, 2003,3(1):65-82.
doi: 10.2174/1566523033347444 pmid: 12553537
[29] Horwitz M S, Efrat S, Christen U, et al. Adenovirus E3 MHC inhibitory genes but not TNF/Fas apoptotic inhibitory genes expressed in beta cells prevent autoimmune diabetes. Proc Natl Acad Sci USA, 2009,106(46):19450-19454.
doi: 10.1073/pnas.0910648106 pmid: 19887639
[30] Wei F, Wang H, Chen X, et al. Dissecting the roles of E1A and E1B in adenoviral replication and RCAd-enhanced RDAd transduction efficacy on tumor cells. Cancer Biology & Therapy, 2014,15(10):1358-1366.
doi: 10.4161/cbt.29842 pmid: 25019940
[31] Pierce M A, Chapman H D, Post C M, et al. Adenovirus early region 3 antiapoptotic 10.4K, 14.5K, and 14.7K genes decrease the incidence of autoimmune diabetes in NOD mice. Diabetes, 2003,52(5):1119-1127.
pmid: 12716741
[32] Blackwell J L, Li H, Gomez-Navarro J, et al. Using a tropism-modified adenoviral vector to circumvent inhibitory factors in ascites fluid. Human Gene Therapy, 2000,11(12):1657-1669.
[33] Shimizu K, Nishinaka T, Tomita K, et al. The investigation of genes, using an improved adenovirus vector, and food for the treatment and prevention of type 2 diabetes mellitus. Yakugaku Zasshi, 2019,139(1):47-51.
doi: 10.1248/yakushi.18-00163-2 pmid: 30606928
[34] Muhammad A K, Xiong W, Puntel M, et al. Safety profile of gutless adenovirus vectors delivered into the normal brain parenchyma: implications for a glioma phase 1 clinical trial. Hum Gene Ther Methods, 2012,23(4):271-284.
doi: 10.1089/hgtb.2012.060 pmid: 22950971
[35] Suzuki R, Tobe K, Aoyama M, et al. Both insulin signaling defects in the liver and obesity contribute to insulin resistance and cause diabetes in Irs2(-/-) mice. Journal of Biological Chemistry, 2004,279(24):25039-25049.
[36] Reach G. Towards a cell therapy for diabetes? An epistemiological perspective. J Soc Biol, 2001,195(1):83-90.
pmid: 11530507
[37] Schwitzgebel V M, Scheel D W, Conners J R, et al. Expression of neurogenin3 reveals an islet cell precursor population in the pancreas. Development, 2000,127(16):3533-3542.
pmid: 10903178
[38] Wang D, Tai P W L, Gao G P. Adeno-associated virus vector as a platform for gene therapy delivery. Nature Reviews Drug Discovery, 2019,18(5):358-378.
doi: 10.1038/s41573-019-0012-9 pmid: 30710128
[39] Yl?-Herttuala S. Endgame: glybera finally recommended for approval as the first gene therapy drug in the European Union. Mol Ther, 2012,20(10):1831-1832.
doi: 10.1038/mt.2012.194 pmid: 23023051
[40] Prasad K M, Yang Z, Bleich D, et al. Adeno-associated virus vector mediated gene transfer to pancreatic beta cells. Gene Ther, 2000,7(18):1553-1561.
doi: 10.1038/sj.gt.3301279 pmid: 11021593
[41] Goudy K, Song S, Wasserfall C, et al. Adeno-associated virus vector-mediated IL-10 gene delivery prevents type 1 diabetes in NOD mice. Proc Natl Acad Sci USA, 2001,98(24):13913-13918.
doi: 10.1073/pnas.251532298 pmid: 11717448
[42] Ueno N, Dube M G, Inui A, et al. Leptin modulates orexigenic effects of ghrelin and attenuates adiponectin and insulin levels and selectively the dark-phase feeding as revealed by central leptin gene therapy. Endocrinology, 2004,145(9):4176-4184.
pmid: 15155574
[43] Tan S Y, Mei Wong J L, Sim Y J, et al. Type 1 and 2 diabetes mellitus: A review on current treatment approach and gene therapy as potential intervention. Diabetes Metab Syndr, 2019,13(1):364-372.
doi: 10.1016/j.dsx.2018.10.008 pmid: 30641727
[44] Lin H Y, Tsai C C, Chen L L, et al. Fibronectin and laminin promote differentiation of human mesenchymal stem cells into insulin producing cells through activating Akt and ERK. J Biomed Sci, 2010,17:56.
doi: 10.1186/1423-0127-17-56 pmid: 20624296
[45] 母义明, 臧丽. 干细胞:糖尿病治疗的新选择. 解放军医学杂志, 2015,40(7):515-518.
Mu Y M, Zang L. Stem cells: a new choice for diabetes therapy. Med J Chin PLA, 2015,40(7):515-518.
[46] HESS D, Li L, Martin M, et al. Bone marrow-derived stem cells initiate pancreatic regeneratio. Nat Biotechnol, 2003,21(7):763-770.
doi: 10.1038/nbt841 pmid: 12819790
[47] Lin P, Chen L, Yang N, et al. Evaluation of stem cell differentiation in diabetic rats transplanted with bone marrow mesenchymal stem cells. Transplant Proc, 2009,41(5):1891-1893.
doi: 10.1016/j.transproceed.2009.02.078
[48] Si Y, Zhao Y, Hao H, et al. Infusion of mesenchymal stem cells ameliorates hyperglycemia in type 2 diabetic rats: identification of a novel role in improving insulin sensitivity. Diabetes, 2012,61(6):1616-1625.
pmid: 22618776
[49] Liu X B, Zheng P, Wang X D, et al. A preliminary evaluation of efficacy and safety of Wharton’s jelly mesenchymal stem cell transplantation in patients with type 2 diabetes mellitus. Stem Cell Research & Therapy, 2014: 57.
[50] Dor Y, Brown J, Martinez O I, et al. Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature, 2004,429(6987):41-46.
pmid: 15129273
[51] Yahyapour R, Farhood B, Graily G, et al. Stem cell tracing through MR molecular imaging. Tissue Engineering and Regenerative Medicine, 2018,15(3):249-261.
[52] Hunter C S, Stein R W. Evidence for loss in identity, de-differentiation, and trans-differentiation of islet beta-cells in type 2 diabetes. Frontiers in Genetics, 2017,8:35.
[53] Gao R, Ustinov J, Korsgren O, et al. In vitro neogenesis of human islets reflects the plasticity of differentiated human pancreatic cells. Diabetologia, 2005,48(11):2296-2304.
[54] Bonner-Weir S, Li W C, Ouziel-Yahalom L, et al. Beta-cell growth and regeneration: replication is only part of the story. Diabetes, 2010,59(10):2340-2348.
pmid: 20876724
[55] Roy B, Yuan L, Lee Y, et al. Fibroblast rejuvenation by mechanical reprogramming and redifferentiation. Proc Natl Acad Sci USA, 2020,117(19):10131-10141.
doi: 10.1073/pnas.1911497117 pmid: 32350144
[56] Kimbrel E A, Lanza R. Current status of pluripotent stem cells: moving the first therapies to the clinic. Nature Reviews Drug Discovery, 2015,14(10):681-692.
[57] Balboa D, Prasad R B, Groop L, et al. Genome editing of human pancreatic beta cell models: problems, possibilities and outlook. Diabetologia, 2019,62(8):1329-1336.
doi: 10.1007/s00125-019-4908-z pmid: 31161346
[58] 王晗月, 杨晓菲, 胡巢凤, 等. CRISPR/Cas9基因编辑技术在糖尿病细胞治疗中的应用研究进展. 生命科学, 2019,31(7):723-730.
Wang H Y, Hu X F, Hu C F, et al. CRISPR/Cas9 gene editing in diabetes cell therapy: recent advances. Chinese Bulletin of Life Sciences, 2019,31(7):723-730.
[59] Ma S, Viola R, Sui L, et al. beta Cell replacement after gene editing of a neonatal diabetes-causing mutation at the insulin locus. Stem Cell Reports, 2018,11(6):1407-1415.
doi: 10.1016/j.stemcr.2018.11.006 pmid: 30503261
[60] Maxwell K G, Augsornworawat P, Velazco-Cruz L, et al. Gene-edited human stem cell-derived beta cells from a patient with monogenic diabetes reverse preexisting diabetes in mice. Science Translational Medicine, 2020,12(540):eaax9106.
[61] Chung J Y, Ain Q U, Song Y, et al. Targeted delivery of CRISPR interference system against Fabp4 to white adipocytes ameliorates obesity, inflammation, hepatic steatosis, and insulin resistance. Genome Research, 2019,29(9):1442-1452.
pmid: 31467027
[1] 武秀知,王宏杰,祖尧. 斑马鱼hoxa1a基因调控颅面骨骼发育的功能研究*[J]. 中国生物工程杂志, 2021, 41(9): 20-26.
[2] 赵霞,朱哲,祖尧. 斑马鱼tbx2b调控心脏房室间隔发育的功能研究*[J]. 中国生物工程杂志, 2021, 41(8): 1-7.
[3] 赵晓煜,徐祺玲,赵晓东,安云飞. 基因治疗慢病毒载体的转导增强策略*[J]. 中国生物工程杂志, 2021, 41(8): 52-58.
[4] 毕博,张宇,赵慧. 酵母杂交系统在CRISPR/Cas9基因编辑系统脱靶率研究中的应用*[J]. 中国生物工程杂志, 2021, 41(6): 27-37.
[5] 黄蕾,万常青,刘美琴,赵敏,郑妍鹏,彭向雷,虞结梅,付远辉,何金生. 利用DNA Assembly方法构建重组腺病毒载体[J]. 中国生物工程杂志, 2021, 41(6): 23-26.
[6] 胡暄,王松,于学玲,张晓鹏. 不稳定EGFP细胞模型的构建及其在基因编辑体系评价中的应用*[J]. 中国生物工程杂志, 2021, 41(5): 17-26.
[7] 王艳梅,寇航,马梅,申玉玉,赵宝顶,路福平,黎明. 利用CRISPR-Cas9技术失活黑曲霉中果胶酶基因及突变株性能评价*[J]. 中国生物工程杂志, 2021, 41(5): 35-44.
[8] 杨梦冰,江易林,祝蕾,安学丽,万向元. CRISPR/Cas植物基因组编辑技术及其在玉米中的应用*[J]. 中国生物工程杂志, 2021, 41(12): 4-12.
[9] 郭洋,陈艳娟,刘怡辰,王海杰,王成稷,王珏,万颖寒,周宇,奚骏,沈如凌. Pd-1基因敲除小鼠构建及初步表型验证[J]. 中国生物工程杂志, 2021, 41(10): 1-11.
[10] 王聪,李秀,牛苗,戴阳光,董哲岳,董小岩,余双庆,杨怡姝. 基于TCID50检测AAV9载体制品感染性滴度的方法[J]. 中国生物工程杂志, 2021, 41(10): 28-32.
[11] 郭洋,万颖寒,王珏,龚慧,周宇,慈磊,万志鹏,孙瑞林,费俭,沈如凌. Toll样受体4(TLR4)基因剔除小鼠构建及初步表型分析[J]. 中国生物工程杂志, 2020, 40(6): 1-9.
[12] 樊斌,陈欢,宋婉莹,陈光,王刚. 乳酸菌基因改造技术研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 84-92.
[13] 黄胜, 严启滔, 熊仕琳, 彭弈骐, 赵蕊. 基于CRISPR/Cas9-SAM系统CHD5基因过表达慢病毒载体的构建及对膀胱癌T24细胞增殖,迁移和侵袭能力的影响 *[J]. 中国生物工程杂志, 2020, 40(3): 1-8.
[14] 王伟东,杜加茹,张运尚,樊剑鸣. CRISPR/Cas9在人病毒感染相关疾病治疗研究中的应用*[J]. 中国生物工程杂志, 2020, 40(12): 18-24.
[15] 雷海英,赵青松,白凤麟,宋慧芳,王志军. 利用CRISPR/Cas9鉴定玉米发育相关基因ZmCen*[J]. 中国生物工程杂志, 2020, 40(12): 49-57.