Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2016, Vol. 36 Issue (10): 60-71    DOI: 10.13523/j.cb.20161009
技术与方法     
限制葡萄糖、葡萄糖/乙酸双底物条件下自由控制丙丁梭菌ABE发酵丙酮浓度和丙酮/丁醇比
王浩1, 张敬书2, 丁健1, 罗洪镇1, 陈锐1, 史仲平1
1 江南大学生物工程学院工业生物技术教育部重点实验室 无锡 214122;
2 石家庄制药集团有限公司 石家庄 050038
Control of Acetone Concentration and Acetone/Butanol Ratio in ABE Fermentation by C. acetobutylicum with a Novel Glucose/Acetate Co-substrate System Incorporating Glucose Limitation
WANG Hao1, ZHANG Jing-shu2, DING Jian1, LUO Hong-zhen1, CHEN Rui1, SHI Zhong-ping1
1 Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China;
2 China Shijiazhuang Pharmaceutical Group Company Limited, Shijiazhuang 050035, China
 全文: PDF(1071 KB)   HTML
摘要:

提出一种可以提高和自由控制丙丁梭菌ABE发酵丙酮浓度与丙酮/丁醇比的方法。(1)通过控制糖化酶用量、反应时间和温度调节玉米培养基初始葡萄糖浓度,使发酵进入到产溶剂期后,残留葡萄糖浓度降至接近于0 g/L的水平;(2)在葡萄糖受限的条件下,诱导丙丁梭菌合成分泌糖化酶,分解寡糖,将葡萄糖维持于低浓度,进而限制梭菌胞内糖酵解途径的碳代谢和NADH生成速度。与此同时,外添乙酸形成葡萄糖/乙酸双底物环境。在能量代谢基本不受破坏、丁醇未达到抑制浓度的条件下,适度抑制丁醇生产,有效地利用外添乙酸强化丙酮合成;(3)在外添乙酸的基础上,添加适量酿酒酵母,形成丙丁梭菌/酿酒酵母混合发酵体系,提高梭菌对高丁醇浓度的耐受能力。整个发酵体系可以将丙酮浓度和丙酮/丁醇比自由控制在5~12 g/L和0.5~1.0的水平,最大丙酮浓度和丙酮/丁醇比达到11.74 g/L和1.02,并可维持丁醇浓度于10~14 g/L的正常水平,充分满足工业ABE发酵对于丙酮和丁醇产品的不同需求。

关键词: 葡萄糖乙酸丙酮生物合成丙酮丁醇梭菌ABE发酵    
Abstract:

A novel strategy for arbitrarily controlling acetone concentration and acetone/butanol ratio in ABE fermentation by C. acetobutylicum was proposed. With this strategy, (1) the residual glucose concentration could reduce to low level close to 0 g/L when ABE fermentation enters the solventogenic phase, by adaptively controlling the initial glucose concentration in the corn-based medium via glucoamylase usage dose, reaction time and temperature regulation; (2) Under the condition of glucose limitation, C. acetobutylicum has the ability to release more glucoamylase for its survival and the secreted glucoamylase could continuously hydrolyze oligosaccharide to maintain glucose at low concentration, and therefore repress the metabolism or synthesis rates of glycolysis and NADH in C. acetobutylicum. At the same time, exogenous addition of acetate creates a glucose/acetate co-substrate environment. The co-substrate system would not deteriorate the energy metabolisms in ABE fermentation, but could adaptively repress butanol synthesis avoiding the early occurrence of butanol inhibition and enhance bio-acetone synthesis by effectively utilizing the exogenously added acetate; (3) On the top of exogenous acetate addition, adaptively adding certain amount of viable S. cerevisiae to form C. acetobutylicum/S. cerevisiae co-culturing system, would enhance C. acetobutylicum tolerant ability against higher butanol concentration environment. The entire system could arbitrarily control acetone concentration and acetone/butanol ratio in the ranges of 5~12 g/L and 0.5~1.0, their maximum values could reach levels of 11.74 g/L and 1.02, while maintaining butanol concentration within normal range of 10~14 g/L, to satisfy different requirements on acetone and butanol products in industrial ABE fermentation.

Key words: Clostridium acetobutylicum    Bio-acetone synthesis    ABE fermentation    Acetate    Glucose
收稿日期: 2016-04-18 出版日期: 2016-10-25
ZTFLH:  Q815  
基金资助:

国家自然科学基金(#20976072)资助项目

通讯作者: 史仲平,电子信箱:zpshi@jiangnan.edu.cn     E-mail: zpshi@jiangnan.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

王浩, 张敬书, 丁健, 罗洪镇, 陈锐, 史仲平. 限制葡萄糖、葡萄糖/乙酸双底物条件下自由控制丙丁梭菌ABE发酵丙酮浓度和丙酮/丁醇比[J]. 中国生物工程杂志, 2016, 36(10): 60-71.

WANG Hao, ZHANG Jing-shu, DING Jian, LUO Hong-zhen, CHEN Rui, SHI Zhong-ping. Control of Acetone Concentration and Acetone/Butanol Ratio in ABE Fermentation by C. acetobutylicum with a Novel Glucose/Acetate Co-substrate System Incorporating Glucose Limitation. China Biotechnology, 2016, 36(10): 60-71.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20161009        https://manu60.magtech.com.cn/biotech/CN/Y2016/V36/I10/60

[1] 顾阳, 蒋宇, 吴辉, 等. 生物丁醇制造技术现状和展望. 生物工程学报, 2010, 26(7): 914-923. Gu Y, Jiang Y, Wu H, et al. Current status and prospects of biobutanol manufacturing technology. Chinese Journal of Biotechnology, 2010, 26(7): 914-923.
[2] Wu H, Nithyanandan K, Zhang J, et al. Impacts of acetone-butanol-ethanol (ABE) ratio on spray and combustion characteristics of ABE-diesel blends. Applied Energy, 2015, 149: 367-378.
[3] Wu H, Nithyanandan K, Zhou N, et al. Impacts of acetone on the spray combustion of acetone-butanol-ethanol (ABE)-diesel blends under low ambient temperature. Fuel, 2015, 142: 109-116.
[4] Xue C, Zhao X Q, Liu C G, et al. Prospective and development of butanol as an advanced biofuel. Biotechnology Advances, 2013, 31(8): 1575-1584.
[5] Jang Y S, Lee J Y, Lee J, et al. Enhanced butanol production obtained by reinforcing the direct butanol-forming route in Clostridium acetobutylicum. MBio, 2012, 3(5): e00314-12.
[6] Jiang Y, Xu C, Dong F, et al. Disruption of the acetoacetate decarboxylase gene in solvent-producing Clostridium acetobutylicum increases the butanol ratio. Metabolic Engineering, 2009, 11(4): 284-291.
[7] Wang S, Zhu Y, Zhang Y, et al. Controlling the oxidoreduction potential of the culture of Clostridium acetobutylicum leads to an earlier initiation of solventogenesis, thus increasing solvent productivity. Applied Microbiology and Biotechnology, 2012, 93(3): 1021-1030.
[8] Zhou J, Zhang H, Zhang Y, et al. Designing and creating a modularized synthetic pathway in cyanobacterium Synechocystis enables production of acetone from carbon dioxide. Metabolic Engineering, 2012, 14(4): 394-400.
[9] Ezejt T, Milne C, Price N D, et al. Achievements and perspectives to overcome the poor solvent resistance in acetone and butanol-producing microorganisms. Applied Microbiology and Biotechnology, 2010, 85(6): 1697-1712.
[10] Köhler K A, Rühl J, Blank L M, et al. Integration of biocatalyst and process engineering for sustainable and efficient n-butanol production. Engineering in Life Sciences, 2015, 15(1): 4-19.
[11] Wu M, Wang M, Liu J H, et al. Life-cycle Assessment of Corn-based Butanol as a Potential Transportation Fuel. Illinois: Argonne National Laboratory, Argonne, 2007. 1-39.
[12] Gao M, Tashiro Y, Wang Q H, et al. High acetone-butanol-ethanol production in pH-stat co-feeding of acetate and glucose. Journal of Bioscience and Bioengineering, 2016, doi:10.1016/j.jbiosc.2016.01.013.
[13] Luo H Z, Ge L B, Zhang J S, et al. Enhancing butanol production under the stress environments of co-culturing Clostridium acetobutylicum/Saccharomyces cerevisiae integrated with exogenous butyrate addition. PLoS One, 2015, 10(10): e0141160.
[14] 毛绍名, 章怀云. 丙酮丁醇梭菌丁醇耐受性. 中国生物工程杂志, 2012, 32(9): 118-124. Mao S M, Zhang H Y. The advance of research on the butanol tolerance of Clostridium acetobutylicun. China Biotechnology, 2012, 32(9): 118-124.
[15] Luo H Z, Ge L B, Zhang J S, et al. Enhancing acetone biosynthesis and acetone-butanol-ethanol fermentation performance by co-culturing Clostridium acetobutylicum/Saccharomyces cerevisiae integrated with exogenous acetate addition. Bioresource Technology, 2016, 200: 111-120.
[16] Chen C K, Blaschek H P. Effect of acetate on molecular and physiological aspects of Clostridium beijerinckii NCIMB 8052 solvent production and strain degeneration. Applied and Environmental Microbiology, 1999, 65(2): 499-505.
[17] Li X, Li Z, Zhang J, et al. Yeast extract promotes phase shift of bio-butanol fermentation by Clostridium acetobutylicum ATCC824 using cassava as substrate. Bioresource Technology, 2012, 125: 43-51.
[18] 李志刚. 基于代谢网络的线图理论提高丙酮-丁醇-乙醇发酵丁醇产量和比率的研究. 无锡: 江南大学, 2014. Li Z G. Improving butanol concentration and butanol/acetone ratio in acetone-butanol-ethanol fermentation by metabolic network based graph theory. Wuxi: Jiangnan University, 2014.
[19] Heluane H, Evans M R, Dagher S F, et al. Meta-analysis and functional validation of nutritional requirements of solventogenic Clostridia growing under butanol stress conditions and coutilization of D-glucose and D-xylose. Applied and Environmental Microbiology, 2011, 77(13): 4473-4485.
[20] Masion E, Amine J, Marczak R. Influence of amino acid supplements on the metabolism of Clostridium acetobutylicum. FEMS Microbiology Letters, 1987, 43(3): 269-274.
[21] Ashe M P, Slaven J W, Long S K, et al. A novel eIF2B-dependent mechanism of translational control in yeast as a response to fusel alcohols. EMBO Journal, 2001, 20(22): 6464-6474.
[22] Tashiro Y, Shinto H, Hayashi M, et al. Novel high-efficient butanol production from butyrate by non-growing Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564) with methyl viologen. Journal of Bioscience and Bioengineering, 2007, 104(3): 238-240.
[23] Gao M, Tashiro Y, Yoshida T, et al. Metabolic analysis of butanol production from acetate in Clostridium saccharoperbutylacetonicum N1-4 using 13C tracer experiments. RSC Advances, 2015, 5(11): 8486-8495.
[24] Li X, Shi Z P, Li Z G. Increasing butanol/acetone ratio and solvent productivity in ABE fermentation by consecutively feeding butyrate to weaken metabolic strength of butyrate loop. Bioprocess and Biosystems Engineering, 2014, 37: 1609-1616.

[1] 吴弘轩, 杨金花, 沈培杰, 李清晨, 黄建忠, 祁峰. 利用大肠杆菌细胞工厂生产吲哚-3-乙酸的研究 *[J]. 中国生物工程杂志, 2021, 41(1): 12-19.
[2] 董璐,张继福,张云,胡云峰. 环氧树脂固定化的Bacillus sp. DL-2胞外蛋白酶在拆分(±)-乙酸苏合香酯中的应用 *[J]. 中国生物工程杂志, 2020, 40(4): 49-58.
[3] 谢琳娜,卜静静,郑敏. AUF1在胞质DNA抑制细胞葡萄糖代谢中的作用研究[J]. 中国生物工程杂志, 2019, 39(11): 54-61.
[4] 党诗莹,马义,文涛,肖兴,洪岸. 纳米复合肽SCM的制备及其对II型糖尿病治疗作用的研究 *[J]. 中国生物工程杂志, 2018, 38(5): 17-23.
[5] 来亚鹏, 邓婷婷, 刘刚, 王娟. 同源过表达BglR对嗜热毁丝霉β-葡萄糖苷酶活性的影响[J]. 中国生物工程杂志, 2017, 37(7): 64-71.
[6] 王得华, 马义, 韩磊, 肖兴, 李艳伟, 党诗莹, 范志勇, 文涛, 洪岸. 新型基因重组PACAP衍生物MPL-2的制备及其抗2型糖尿病作用研究[J]. 中国生物工程杂志, 2017, 37(5): 59-65.
[7] 翟兵兵, 马倩, 丁明珠, 元英进. 谷胱甘肽对VC一步发酵作用的研究[J]. 中国生物工程杂志, 2016, 36(8): 38-45.
[8] 郭雪娇, 查健, 姚坤, 王昕, 李炳志, 元英进. 选育耐受复合抑制剂酿酒酵母提高乙醇产量[J]. 中国生物工程杂志, 2016, 36(5): 97-105.
[9] 翟兵兵, 董秀涛, 丁明珠, 元英进. VC三菌种一步发酵方法的构建与研究[J]. 中国生物工程杂志, 2016, 36(12): 72-78.
[10] 郭永华, 陈济琛, 蔡海松, 陈龙军, 林新坚. Geobacillus sp.CHB1环糊精葡萄糖基转移酶淀粉结合位点N623饱和突变对催化效率与产物特异性的影响[J]. 中国生物工程杂志, 2016, 36(11): 30-38.
[11] 刘阳, 杨雅麟, 张宇婷, 冉超, 周志刚. 维氏气单胞菌B565β-N-乙酰氨基葡萄糖苷酶的表达、纯化及酶学性质[J]. 中国生物工程杂志, 2015, 35(2): 38-44.
[12] 夏亚穆, 李晨晨. 环糊精葡萄糖基转移酶的基因改造与高效表达[J]. 中国生物工程杂志, 2015, 35(2): 105-110.
[13] 车绕琼, 黄力, 王琳, 赵鹏, 李涛, 余旭亚. 葡萄糖对单针藻异养、兼养生长及油脂合成的影响[J]. 中国生物工程杂志, 2015, 35(11): 46-51.
[14] 刘伟, 郑璞, 靳新娜. 阻断嗜乙酰乙酸棒杆菌乙酸合成途径对其在缺氧条件下产琥珀酸的影响[J]. 中国生物工程杂志, 2014, 34(9): 48-55.
[15] 林俊涵, 邱东凤, 林晨. 丁醇产生菌育种研究进展[J]. 中国生物工程杂志, 2014, 34(12): 118-128.