Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2016, Vol. 36 Issue (5): 97-105    DOI: 10.13523/j.cb.20160514
技术与方法     
选育耐受复合抑制剂酿酒酵母提高乙醇产量
郭雪娇1,2, 查健1, 姚坤1, 王昕1,2, 李炳志1,2, 元英进1,2
1. 天津大学化工学院 天津大学系统生物工程教育部重点实验室 天津 300072;
2. 天津化学化工协同创新中心合成生物学研究平台 天津 300072
Accelerated Ethanol Production by a Tolerant Saccharomyces cerevisiae to Inhibitor Mixture of Furfural, Acetic Acid and Phenol
GUO Xue-jiao1,2, ZHA Jian1, YAO Kun1, WANG Xin1,2, LI Bing-zhi1,2, YUAN Ying-jin1,2
1. Key Laboratory of Systems Bioengineering(Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China;
2. SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering(Tianjin, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
 全文: PDF(689 KB)   HTML
摘要:

能够耐受纤维素预处理中抑制剂的酿酒酵母对高效、经济生产纤维素乙醇至关重要。利用诱变结合驯化工程选育了一株可耐受复合抑制剂(1.3g/L糠醛、5.3g/L乙酸及1.0g/L苯酚)的工业酿酒酵母YYJ003。在pH 4.0的含有抑制剂的培养基中,耐受菌株乙醇产率是原始菌株的7.8倍,糠醛转化速率提高了5倍。在pH 5.5的复合抑制剂条件下,YYJ003发酵时间(16h)比野生菌株发酵时间(22h)缩短6h。在pH 4.0的未脱毒的玉米秸秆水热法预处理水解液中YYJ003的乙醇产率达到0.50g/g(乙醇/葡萄糖),乙醇产速达到4.16g/(L·h),而对照菌株无乙醇产出。

关键词: 乙醇糠醛抑制剂酵母乙酸纤维素水解液    
Abstract:

Construction of tolerant yeast to the inhibitory compounds from the pretreatment of lignocelluloses is quite required for efficient and economical cellulosic ethanol production. An industrial Saccharomyces cerevisiae strain YYJ003 was developed to be tolerant to mixed inhibitors, including 1.3g/L furfural, 5.3g/L acetic acid and 1.0g/L phenol. Compared with parent strain S, YYJ003 strain exhibited 7.8-fold ethanol productivity and a 6-fold conversion rate of furfural in the presence of inhibitor cocktail at pH 4.0. At pH 5.5 with inhibitor cocktails, the fermentation time for strain YYJ003 was shortened to 16 hours while 22 hours for S strain, respectively. Furthermore, YYJ003 achieved the ethanol yield of 0.50g/g glucose, and ethanol productivity of 4.16g/(L·h) in liquid hot water pretreated corn stover hydrolysate without detoxification at pH 4.0 while strain S failed to ferment.

Key words: Furfural    Acetic acid    Inhibitors    Yeast    Ethanol    Hydrolysates
收稿日期: 2015-11-06 出版日期: 2015-12-09
ZTFLH:  Q819  
基金资助:

教育部博士点基金(20110032120075),天津市科委科技计划项目(13RCGFSY19800)资助项目

通讯作者: 李炳志     E-mail: bzli@tju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
郭雪娇
查健
姚坤
王昕
李炳志
元英进

引用本文:

郭雪娇, 查健, 姚坤, 王昕, 李炳志, 元英进. 选育耐受复合抑制剂酿酒酵母提高乙醇产量[J]. 中国生物工程杂志, 2016, 36(5): 97-105.

GUO Xue-jiao, ZHA Jian, YAO Kun, WANG Xin, LI Bing-zhi, YUAN Ying-jin. Accelerated Ethanol Production by a Tolerant Saccharomyces cerevisiae to Inhibitor Mixture of Furfural, Acetic Acid and Phenol. China Biotechnology, 2016, 36(5): 97-105.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20160514        https://manu60.magtech.com.cn/biotech/CN/Y2016/V36/I5/97

[1] Li Z, Ji X, Kan S, et al. Past, present, and future industrial biotechnology in China. Adv Biochem Eng Biotechnol, 2010, 122: 1-42.
[2] Buraimoh O M, Ilori M O, Amund O O, et al. Assessment of bacterial degradation of lignocellulosic residues (sawdust) in a tropical estuarine microcosm using improvised floating raft equipment. International Biodeterioration & Biodegradation, 2015, 104: 186-193.
[3] Zhong C, Cao Y X, Li B Z, et al. Biofuels in China: past, present and future. Biofuels, Bioproducts and Biorefining, 2010, 4(3): 326-342.
[4] Farrell A E, Plevin R J, Turner B T, et al. Ethanol can contribute to energy and environmental goals. Science, 2006, 311(5760): 506-508.
[5] Solomon B D, Barnes J R, and Halvorsen K E. Grain and cellulosic ethanol: history, economics, and energy policy. Biomass and Bioenergy, 2007, 31(6): 416-425.
[6] Parawira W, Tekere M. Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review. Crit Rev Biotechnol, 2011, 31(1): 20-31.
[7] Ingram T, Wormeyer K, Lima J C, et al. Comparison of different pretreatment methods for lignocellulosic materials. Part I: conversion of rye straw to valuable products. Bioresour Technol, 2011, 102(8): 5221-5228.
[8] Marker T L, Felix L G, Linck M B, et al. Integrated hydropyrolysis and hydroconversion (IH2) for the direct production of gasoline and diesel fuels or blending components from biomass, part 1: Proof of principle testing. Environmental Progress & Sustainable Energy, 2012, 31(2): 191-199.
[9] Silveira M H L, Morais A R C, da Costa Lopes A M, et al. Current pretreatment technologies for the development of cellulosic ethanol and biorefineries. ChemSusChem, 2015, 8(20): 3366-3390.
[10] Palmqvist E, Hahn-Hgerdal B. Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresource Technology, 2000, 74(1): 17-24.
[11] Field S, Ryden P, Wilson D, et al. Identification of furfural resistant strains of Saccharomyces cerevisiae and Saccharomyces paradoxus from a collection of environmental and industrial isolates. Biotechnology for Biofuels, 2015, 8(1): 1-8.
[12] Narendranath N V, Thomas K C, Ingledew W M. Effects of acetic acid and lactic acid on the growth of Saccharomyces cerevisiae in a minimal medium. J Ind Microbiol Biotechnol, 2001, 26(3): 171-177.
[13] Li H, Zhang X, Shen Y, et al. Inhibitors and their effects on Saccharomyces cerevisiae and relevant countermeasures in bioprocess of ethanol production from lignocellulose. Chin J Biotech, 2009, 25(9): 1321-1328.
[14] Jonsson L J, Alriksson B, Nilvebrant N O. Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels, 2013, 6(1): 16.
[15] Guo X, Cavka A, Jonsson L J, et al. Comparison of methods for detoxification of spruce hydrolysate for bacterial cellulose production. Microb Cell Fact, 2013, 12: 93.
[16] Nieves L M, Panyon L A, Wang X. Engineering sugar utilization and microbial tolerance toward lignocellulose conversion. Front Bioeng Biotechnol, 2015, 3: 17-27.
[17] Zhang M M, Zhao X Q, Cheng C, et al. Improved growth and ethanol fermentation of Saccharomyces cerevisiae in the presence of acetic acid by overexpression of SET5 and PPR1. Biotechnology Journal, 2015,10(12):1903-1911.
[18] Wallace-Salinas V, Gorwa-Grauslund M F. Adaptive evolution of an industrial strain of Saccharomyces cerevisiae for combined tolerance to inhibitors and temperature. Biotechnol Biofuels, 2013, 6(1): 151.
[19] Keating J D, Panganiban C, Mansfield S D. Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds. Biotechnol Bioeng, 2006, 93(6): 1196-1206.
[20] Zha J, Li B Z, Shen M H, et al. Optimization of CDT-1 and XYL1 expression for balanced Co-production of ethanol and xylitol from cellobiose and xylose by engineered Saccharomyces cerevisiae. PLoS One, 2013, 8(7): e68317.
[21] Wang X, Bai X, Chen D F, et al. Increasing proline and myo-inositol improves tolerance of Saccharomyces cerevisiae to the mixture of multiple lignocellulose-derived inhibitors. Biotechnol Biofuels, 2015, 8: 142-150.
[22] Li B Z, Yuan Y J. Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae. Appl Microbiol Biotechnol, 2010, 86(6): 1915-1924.
[23] Strijbis K, Distel B. Intracellular acetyl unit transport in fungal carbon metabolism. Eukaryot Cell, 2010, 9(12): 1809-1815.
[24] Oshoma C E, Greetham D, Louis E J, et al. Screening of non-Saccharomyces cerevisiae strains for tolerance to formic acid in bioethanol fermentation. PLoS One, 2015, 10(8): e0135626.
[25] Palmqvist E, Grage H, Meinander N Q, et al. Main and interaction effects of acetic acid, furfural, and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts. Biotechnol Bioeng, 1999, 63(1): 46-55.
[26] Oliva J M, Negro M J, Sáez F, et al. Effects of acetic acid, furfural and catechol combinations on ethanol fermentation of Kluyveromyces marxianus. Process Biochemistry, 2006, 41(5): 1223-1228.
[27] Li B Z, Cheng J S, Qiao B, et al. Genome-wide transcriptional analysis of Saccharomyces cerevisiae during industrial bioethanol fermentation. J Ind Microbiol Biotechnol, 2010, 37(1): 43-55.
[28] Martinez A, Rodriguez M E, Wells M L, et al. Detoxification of dilute acid hydrolysates of lignocellulose with lime. Biotechnol Prog, 2001, 17(2): 287-293.
[29] Liu Z L, Slininger P J, Gorsich S W. Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains. Appl Biochem Biotechnol, 2005, 121-124(2): 451-460.
[30] Wallace-Salinas V, Brink D P, Ahren D, et al. Cell periphery-related proteins as major genomic targets behind the adaptive evolution of an industrial Saccharomyces cerevisiae strain to combined heat and hydrolysate stress. BMC Genomics, 2015, 16(1):514.
[31] Heer D, Sauer U. Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain. Microb Biotechnol, 2008, 1(6): 497-506.
[32] Smith J, van Rensburg E, Gorgens J F. Simultaneously improving xylose fermentation and tolerance to lignocellulosic inhibitors through evolutionary engineering of recombinant Saccharomyces cerevisiae harbouring xylose isomerase. BMC Biotechnol, 2014, 14: 41-58.
[33] Casey E, Sedlak M, Ho N W, et al. Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae. FEMS Yeast Res, 2010, 10(4): 385-393.
[34] Sanchezi Nogue V, Narayanan V, Gorwa-Grauslund M F. Short-term adaptation improves the fermentation performance of Saccharomyces cerevisiae in the presence of acetic acid at low pH. Appl Microbiol Biotechnol, 2013, 97(16): 7517-7525.
[35] Bellissimi E, van Dijken J P, Pronk J T, et al. Effects of acetic acid on the kinetics of xylose fermentation by an engineered, xylose-isomerase-based Saccharomyces cerevisiae strain. FEMS Yeast Res, 2009, 9(3): 358-364.
[36] Yu Q, Liu J, Zhuang X, et al. Liquid hot water pretreatment of energy grasses and its influence of physico-chemical changes on enzymatic digestibility. Bioresource Technology, 2016, 199: 265-270.
[37] Svanstrom A, Boveri S, Bostrom E, et al. The lactic acid bacteria metabolite phenyllactic acid inhibits both radial growth and sporulation of filamentous fungi. BMC Res Notes, 2013, 6: 464-473.
[38] Liu Z L, Slininger P J, Dien B S, et al. Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran. J Ind Microbiol Biotechnol, 2004, 31(8): 345-352.
[39] Yi X, Gu H, Gao Q, et al. Transcriptome analysis of Zymomonas mobilis ZM4 reveals mechanisms of tolerance and detoxification of phenolic aldehyde inhibitors from lignocellulose pretreatment. Biotechnol Biofuels, 2015, 8: 153-168.
[40] Shui Z X, Qin H, Wu B, et al. Adaptive laboratory evolution of ethanologenic Zymomonas mobilis strain tolerant to furfural and acetic acid inhibitors. Applied Microbiology and Biotechnology, 2015, 99(13): 5739-5748.
[41] Izmirlioglu G, Demirci A. Enhanced bio-ethanol production from industrial potato waste by statistical medium optimization. International Journal of Molecular Sciences, 2015, 16(10): 24490.
[42] Qi X, Zha J, Liu G G, et al. Heterologous xylose isomerase pathway and evolutionary engineering improve xylose utilization in Saccharomyces cerevisiae. Front Microbiol, 2015, 6: 1165.
[43] Shen M H, Song H, Li B Z, et al. Deletion of D-ribulose-5-phosphate 3-epimerase (RPE1) induces simultaneous utilization of xylose and glucose in xylose-utilizing Saccharomyces cerevisiae. Biotechnol Lett, 2015, 37(5): 1031-1036.
[44] Huang C F, Lin T H, Guo G L, et al. Enhanced ethanol production by fermentation of rice straw hydrolysate without detoxification using a newly adapted strain of Pichia stipitis. Bioresour Technol, 2009, 100(17): 3914-3920.
[45] Martin C, Marcet M, Almazan O, et al. Adaptation of a recombinant xylose-utilizing Saccharomyces cerevisiae strain to a sugarcane bagasse hydrolysate with high content of fermentation inhibitors. Bioresour Technol, 2007, 98(9): 1767-1773.
[46] Bajwa P K, Shireen T, D'Aoust F, et al. Mutants of the pentose-fermenting yeast Pichia stipitis with improved tolerance to inhibitors in hardwood spent sulfite liquor. Biotechnol Bioeng, 2009, 104(5): 892-900.
[47] Tian S, Zhu J, Yang X. Evaluation of an adapted inhibitor-tolerant yeast strain for ethanol production from combined hydrolysate of softwood. Applied Energy, 2011, 88(5): 1792-1796.

[1] 毕博,张宇,赵慧. 酵母杂交系统在CRISPR/Cas9基因编辑系统脱靶率研究中的应用*[J]. 中国生物工程杂志, 2021, 41(6): 27-37.
[2] 翟君叶,成旭,孙泽敏,李春,吕波. 毛蕊花糖苷的生物合成研究进展[J]. 中国生物工程杂志, 2021, 41(5): 94-104.
[3] 朱航志,蒋珊,陈丹,刘鹏阳,万霞. 引入新型异戊二烯醇利用途径促进解脂耶氏酵母中β-胡萝卜素的合成*[J]. 中国生物工程杂志, 2021, 41(4): 37-46.
[4] 董曙馨,秦磊,李春,李珺. 利用转录因子工程重塑代谢网络实现细胞工厂高效生产[J]. 中国生物工程杂志, 2021, 41(4): 55-63.
[5] 陈莹,李谦. 特殊酵母工业应用专利发展态势分析[J]. 中国生物工程杂志, 2021, 41(4): 91-99.
[6] 陈中伟,郑璞,陈鹏程,吴丹. 耐热植酸酶突变体的筛选及性质研究 *[J]. 中国生物工程杂志, 2021, 41(2/3): 30-37.
[7] 薛志勇,代红生,张显元,孙艳颖,黄志伟. 表达透明颤菌血红蛋白基因对酿酒酵母生长及细胞内氧化状态的影响*[J]. 中国生物工程杂志, 2021, 41(11): 32-39.
[8] 陈鑫洁,钱芷兰,刘启,赵清,张元兴,蔡孟浩. 毕赤酵母底盘芳香族氨基酸合成途径改造生产肉桂酸及对香豆酸*[J]. 中国生物工程杂志, 2021, 41(10): 52-61.
[9] 吴弘轩, 杨金花, 沈培杰, 李清晨, 黄建忠, 祁峰. 利用大肠杆菌细胞工厂生产吲哚-3-乙酸的研究 *[J]. 中国生物工程杂志, 2021, 41(1): 12-19.
[10] 石鹏程, 纪晓俊. 酵母系统表达人表皮生长因子研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 72-79.
[11] 宋以梅,贾秀伟,李树标,高翠娟. 工业微生物解脂耶氏酵母及其应用研究*[J]. 中国生物工程杂志, 2020, 40(9): 77-86.
[12] 赵妍淑,张金华,宋浩. 工程原核生物和酵母菌中生产单克隆抗体和抗体片段研究进展 *[J]. 中国生物工程杂志, 2020, 40(8): 74-83.
[13] 岑黔鸿,高彤,任怡,雷涵. 重组酿酒酵母表达幽门螺杆菌VacA蛋白及其免疫原性分析*[J]. 中国生物工程杂志, 2020, 40(5): 15-21.
[14] 董璐,张继福,张云,胡云峰. 环氧树脂固定化的Bacillus sp. DL-2胞外蛋白酶在拆分(±)-乙酸苏合香酯中的应用 *[J]. 中国生物工程杂志, 2020, 40(4): 49-58.
[15] 章小毛,郭敬涵,洪解放,陆海燕,丁娟娟,邹少兰,范寰. UPRE-lac Z为报告基因评价酵母UPR响应初步研究 *[J]. 中国生物工程杂志, 2020, 40(10): 1-9.