Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2017, Vol. 37 Issue (5): 59-65    DOI: 10.13523/j.cb.20170508
技术与方法     
新型基因重组PACAP衍生物MPL-2的制备及其抗2型糖尿病作用研究
王得华1, 马义1, 韩磊1, 肖兴1, 李艳伟1, 党诗莹1, 范志勇2, 文涛1, 洪岸1
1. 暨南大学细胞生物学系 暨南大学生物医药研究院 广东省生物工程药物重点实验室, 基因工程药物国家工程研究中心 广州 510632;
2. 广州中医药大学第二附属医院(广东省中医院) 广州 510405
Preparation of Novel Recombinant PACAP Derivative MPL-2 and Its Effect on Anti-type 2 Diabetes Mellitus
WANG De-hua1, MA Yi1, HAN Lei1, XIAO Xing1, LI Yan-wei1, DANG Shi-ying1, FAN Zhi-yong2, WEN Tao1, HONG An1
1. Department of Cell Biology of Jinan University, Institute of Biological Medicine of Jinan University, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China;
2. The Second Affiliated Hospital of Guangzhou University of Chinese Medicine(Guangdong Provincial Hospital of Traditional Chinese Medicine), Guangzhou 510405, China
 全文: PDF(780 KB)   HTML
摘要:

利用基因工程技术高效制备具有治疗2型糖尿病功能的垂体腺苷酸环化酶激活肽(PACAP)衍生物MPL-2,并以2型糖尿病小鼠(db/db小鼠)为模型在体内研究其抗2型糖尿病的生物学作用。实验结果表明:利用基因工程技术制备的PACAP27衍生多肽MPL-2的分子质量为3 902Da.,纯度达97%,其产率可达29.3mg/L发酵产物;在以db/db小鼠为模型的体内葡萄糖耐量实验中,MPL-2可有效促进小鼠胰岛素第一时相(5~15min)分泌,显著提高小鼠的葡萄糖耐受能力。在MPL-2的长效药效学实验中,经过8周连续用药治疗后,MPL-2可显著提高db/db小鼠的胰岛素敏感性,胰岛素耐量实验60min时MPL-2可将小鼠血糖降至初始值的63.52%;同时,在8周连续用药治疗过程中,与生理盐水(NS)处理组相比,MPL-2可有效降低db/db小鼠的体重、空腹血糖、饮食量、饮水量,分别低于NS组21.98%、21.46%、22.20%、60.07%,而且可显著改善db/db小鼠的血脂常数,生物学作用显著优于多肽BAY55-9837。建立了新型基因重组PACAP27衍生多肽MPL-2的高效制备技术,重组多肽MPL-2可有效改善2型糖尿病db/db小鼠的葡萄糖耐量、胰岛素敏感性、血脂常数,显著降低db/db小鼠的体重、空腹血糖、饮食和饮水量,从而发挥治疗2型糖尿病的生物学作用,可为MPL-2的药用研发提供实验数据。

关键词: 垂体腺苷酸环化酶激活肽衍生物胰岛素敏感性2型糖尿病基因工程葡萄糖耐量    
Abstract:

MPL-2, a pituitary adenylate cyclase-activating polypeptide (PACAP) derivative was prepared by gene recombination engineering technique and the effect of anti-type 2 diabetes mellitus was studied in db/db mice. The results showed that the molecular weight of MPL-2 was 3 902Da, and the purity was about 97% with its yeid up to 29.3mg/(per liter of fermentation product). The in vivo glucose tolerance test on db/db mice showed that MPL-2 can effectively promote the secretion of insulin in the first phase (5-15min), and improve glucose tolerance in mice significantly. Furthermore, chronic administration of MPL-2 by daily injection for 8 weeks significantly improves lipid profiles and also greatly increases insulin sensitivity in db/db mice,which decreased the blood glucose of the mice to 63.52% of the initial value at 60min in the insulin tolerance test. At the meanwhile, the body weight, fasting blood glucose, food and water intake of db/db mice were also decreased by MPL-2, which was respectively lower 21.98%, 21.46%, 22.20% and 60.07% than that of NS group. It showed that MPL-2 was more effective than BAY55-9837. In conclusion, the recombinant MPL-2 could effectively improve the glucose tolerance, insulin sensitivity and lipid level of db/db mice, and significantly decreased body weight, fasting blood glucose, food intake and water consumption, thus play a important role in the biological treatment of type 2 diabetes. Experimental basis for the research and development of MPL-2 can also be provided.

Key words: Type 2 diabetes    Insulin sensitivity    Glucose tolerance    Genetic engineering    Pituitary adenylatecyclase-activating polypeptide(PACAP) derivative
收稿日期: 2017-01-03 出版日期: 2017-05-25
ZTFLH:  Q78  
基金资助:

国家自然科学基金项目(81373314)、广东省自然科学基金项目(2015A030313333,2015A030313345)、广东省科技计划项目(2014A020210015,2013B090500105)、中央高校基本科研业务费专项资金(21615412)资助项目

通讯作者: 马义     E-mail: tmayi@jnu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

王得华, 马义, 韩磊, 肖兴, 李艳伟, 党诗莹, 范志勇, 文涛, 洪岸. 新型基因重组PACAP衍生物MPL-2的制备及其抗2型糖尿病作用研究[J]. 中国生物工程杂志, 2017, 37(5): 59-65.

WANG De-hua, MA Yi, HAN Lei, XIAO Xing, LI Yan-wei, DANG Shi-ying, FAN Zhi-yong, WEN Tao, HONG An. Preparation of Novel Recombinant PACAP Derivative MPL-2 and Its Effect on Anti-type 2 Diabetes Mellitus. China Biotechnology, 2017, 37(5): 59-65.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20170508        https://manu60.magtech.com.cn/biotech/CN/Y2017/V37/I5/59

[1] Miyata A, Arimura A, Dahl R R,et al. Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochemical and Biophysical Research Communications, 1989, 164(1):567-574.
[2] Ma Y, Luo T, Xu W, et al. A new recombinant pituitary adenylate cyclase-activating peptide-derived peptide efficiently promotes glucose uptake and glucose-dependent insulin secretion. Acta Biochimica et Biophysica Sinica. 2012, 44(11):948-956.
[3] Vaudry D, Falluel-Morel A, Bourgault S, et al. Pituitary adenylate cyclase-activating polypeptide and its receptors:20 years after the discovery. Pharmacological Reviews. 2009, 61(3):283-357.
[4] Pan C Q, Li F, Tom I, et al. Engineering novel VPAC2-selective agonists with improved stability and glucose-lowering activity in vivo. Journal of Pharmacology and Experimental Therapeutics. 2007, 320(2):900-906.
[5] Yu R J, Xie Q L, Dai Y, et al. Intein-mediated rapid purification and characterization of a novel recombinant agonist for VPAC2. Peptides, 2006. 27(6):1359-1366.
[6] Sakurai Y, Shintani N, Hayata A, et al. Trophic effects of PACAP on pancreatic islets:a mini-review. Journal of Molecular Neuroscience, 2011, 43(1):3-7.
[7] Tang C, Ahmed K, Gille A, et al. Loss of FFA2 and FFA3 increases insulin secretion and improves glucose tolerance in type 2 diabetes. Nature Medicine, 2015, 21(2):173-177.
[8] Association A D. Diagnosis and classification of diabetes mellitus. Diabetes Care, 2012, 35(Supplement 1):S64-S71.
[9] Gray S L, Cummings K J, Jirik F R, et al. Targeted disruption of the pituitary adenylate cyclase-activating polypeptide gene results in early postnatal death associated with dysfunction of lipid and carbohydrate metabolism. Molecular Endocrinology, 2001, 15(10):1739-1747.
[10] Nakata M, Kohno D, Shintani N, et al. PACAP deficient mice display reduced carbohydrate intake and PACAP activates NPY-containing neurons in the rat hypothalamic arcuate nucleus. Neuroscience Letters, 2004, 370(2):252-256.
[11] Tomimoto S, Ojika T, Shintani N, et al. Markedly reduced white adipose tissue and increased insulin sensitivity in adcyap1-deficient mice. Journal of Pharmacological Sciences, 2008, 107(1):41-48.
[12] Green B D, Irwin N, Flatt P R. Direct and indirect effects of obestatin peptides on food intake and the regulation of glucose homeostasis and insulin secretion in mice. Peptides, 2007, 28(5):981-987.
[13] Yada T,Sakurada M, Filipsson K, et al. Intraperitoneal PACAP administration decreases blood glucose in GK rats, and in normal and high fat diet mice. Annals of the New York Academy of Sciences, 2000, 921(1):259-263.
[14] Akesson L, Ahrén B, Manganiello V C, et al. Dual effects of pituitary adenylate cyclase-activating polypeptide and isoproterenol on lipid metabolism and signaling in primary rat adipocytes. Endocrinology, 2003, 144(12):5293-5299.
[15] Åkesson L, Ahrén B, Edgren G, et al. VPAC2-R mediates the lipolytic effects of pituitary adenylate cyclase-activating polypeptide/vasoactive intestinal polypeptide in primary rat adipocytes. Endocrinology, 2005, 146(2):744-750.
[16] Elghazi L, Balcazar N, Bernal-Mizrachi E. Emerging role of protein kinase B/Akt signaling in pancreatic β-cell mass and function. The international journal of biochemistry & cell biology, 2006, 38(2):157-163.
[17] Prentki M, Matschinsky F M. Ca2+, cAMP, and phospholipid-derived messengers in coupling mechanisms of insulin secretion. Physiological Reviews, 1987, 67(4):1185-1248.

[1] 彭向雷,王烨,王丽男,苏彦斌,付远辉,郑妍鹏,何金生. 单引物PCR法引入定点突变 *[J]. 中国生物工程杂志, 2020, 40(8): 19-23.
[2] 刘迪,张洪春. 慢性阻塞性肺疾病基因工程动物模型研究进展 *[J]. 中国生物工程杂志, 2020, 40(4): 59-68.
[3] 陈庆宇,王鲜忠,张姣姣. 基因技术在治疗2型糖尿病中的应用*[J]. 中国生物工程杂志, 2020, 40(11): 73-81.
[4] 陈春琳,秦松,宋宛霖,刘志丹,刘正一. 褐藻寡糖生物法制备研究进展 *[J]. 中国生物工程杂志, 2020, 40(10): 85-95.
[5] 马淑霞,张玲,闫晋飞,游松. 裂壶藻脂肪酸合酶途径合成多不饱和脂肪酸的研究 *[J]. 中国生物工程杂志, 2018, 38(9): 27-34.
[6] 贺雪婷,张敏华,洪解放,马媛媛. 大肠杆菌丁醇耐受机制及耐受菌选育研究进展 *[J]. 中国生物工程杂志, 2018, 38(9): 81-87.
[7] 冯琳晶,于洋,杜红伟. FoxO1在胰岛β细胞代谢灵活性受损及失代偿进程中的作用 *[J]. 中国生物工程杂志, 2018, 38(6): 70-76.
[8] 党诗莹,马义,文涛,肖兴,洪岸. 纳米复合肽SCM的制备及其对II型糖尿病治疗作用的研究 *[J]. 中国生物工程杂志, 2018, 38(5): 17-23.
[9] 陶宇,李高建,舒建洪,吴月红,杨芳,何玉龙. 猪支原体肺炎基因工程疫苗的研究进展 *[J]. 中国生物工程杂志, 2018, 38(2): 95-101.
[10] 石红璆,查代明,张炳火,李汉全. 全细胞脂肪酶研究进展 *[J]. 中国生物工程杂志, 2018, 38(11): 51-58.
[11] 吴锁伟,万向元. 利用生物技术创建主要作物雄性不育杂交育种和制种的技术体系[J]. 中国生物工程杂志, 2018, 38(1): 78-87.
[12] 郜娇娇, 杨树林. 基因工程技术优化透明质酸生产的研究进展[J]. 中国生物工程杂志, 2017, 37(8): 72-77.
[13] 尹舒贤, 赵月华, 刘超, 吕占军, 王秀芳. 人源Alu RNA工程菌的构建和表达[J]. 中国生物工程杂志, 2017, 37(7): 88-96.
[14] 陈静, 康赐明, 罗文新. 治疗性抗体半衰期改造研究进展[J]. 中国生物工程杂志, 2017, 37(5): 87-96.
[15] 甘春杨, 刘亚, 罗英英, 张文露, 黄爱龙, 蔡雪飞, 胡接力. 一种适用于片段替换/插入突变扫描的克隆方法[J]. 中国生物工程杂志, 2016, 36(8): 55-63.