Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2016, Vol. 36 Issue (10): 53-59    DOI: 10.13523/j.cb.20161008
技术与方法     
马铃薯不同组织的诱导分化及其对遗传转化效率的影响
朱雪瑞1, 季静1, 王罡1, 马志刚2, 杨丹1, 金超1, 李辰1
1 天津大学环境科学与工程学院 天津 300072;
2 天津大学化工学院 天津 300072
Influence on the Conversion Efficiency of Induced Differentiation of Various Potato Tissues
ZHU Xue-rui1, JI Jing1, WANG Gang1, MA Zhi-gang2, YANG Dan1, JIN Chao1, LI Chen1
1. School of Environmental Science and Engineering, Tianjin University, Tianjing 300072, China;
2. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
 全文: PDF(766 KB)   HTML
摘要:

在农业快速发展过程中,基因工程作为改造马铃薯性状的重要手段,一直备受关注。优化马铃薯组织培养体系及外源基因转化条件是进行马铃薯转基因工作的基础。以三种熟性不同的马铃薯栽培品种(东农303、早大白、大西洋)的试管苗为试验材料,采用正交实验,对茎段和试管薯的分化体系进行筛选、优化,建立不同品种茎段的愈伤再生体系及试管薯直接分化再生体系。将以LYCB为目的基因,以NPTII为筛选标记的载体,利用农杆菌转化法,分别对三种材料试管苗的茎段及试管薯进行转基因操作,并对转化条件进行优化,以建立适合于不同品种马铃薯茎段及试管薯的遗传转化体系。以研究中得到的最佳离体再生体系及最优遗传转化体系为基础,利用PCR方法,进行阳性植株检测并统计。研究发现,在东农303、早大白、大西洋三种品种中,经由茎段愈伤组织转化,获得的阳性植株转化率分别为36%、35%、28%;经由试管薯直接分化,获得的阳性植株转化率分别为43%、45%、17%。在后期转基因操作中,东农303/早大白转化时可采用试管薯作为试验组织,大西洋则适合用茎段。

关键词: 再生体系直接分化马铃薯试管薯遗传转化    
Abstract:

With rapid development of agriculture,genetic engineering as an important means of transformation of the potato traits has been extensively applied.Optimization of potato tissue culture system and exogenous gene conversion conditions are the basis of the work of the transgenic potato.Three potato cultivars having different maturity period(Dongnong 303,Zaodabai,Atlantic)have been tested, with the use of orthogonal experiment,screen,optimize stem segments and Microtuber differentiation system.Stem callus regeneration system and in vitro differentiation of potato direct regeneration system were built.Then applied genetic transformation with Agrobacterium tumefaciens including the reconstruction vector carrying the target gene LYCB and selection marker NPTII.Respectively,the three materials stem section plantlets and microtubers were manipulated,and the transgenic conversion conditions were optimized for each one.Then the three were applyied to the best regeneration system and genetic transformation system,finally positive plants using PCR screening and statistically analysised the data were got.The results show that conversion rate via stem callus of Dongnong 303,Zaodabai and Atlantic respectively were 36%,35%,28%;direct differentiation rate via Microtuber of them separately were 43%,45%,17%.In conclusion,microtuber of Dongnong 303/Zaodabai is suitable for the conversion tissue of test organization,stem of the Atlantic is better conversion one.

Key words: Regeneration system    Microtuber    Genetic transformation    Solanum tuberosum    Direct differentiation
收稿日期: 2016-05-03 出版日期: 2016-10-25
ZTFLH:  Q812  
基金资助:

国家自然科学基金面上项目(2013B1-0043)、国家科技重大专项(2014Z1-0002)、国家自然科学基金青年项目(31300329)资助项目

通讯作者: 季静,电子信箱:jijingtjdx@163.com;王罡,电子信箱:wanggangtjdx@126.com     E-mail: jijingtjdx@163.com;wanggangtjdx@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

朱雪瑞, 季静, 王罡, 马志刚, 杨丹, 金超, 李辰. 马铃薯不同组织的诱导分化及其对遗传转化效率的影响[J]. 中国生物工程杂志, 2016, 36(10): 53-59.

ZHU Xue-rui, JI Jing, WANG Gang, MA Zhi-gang, YANG Dan, JIN Chao, LI Chen. Influence on the Conversion Efficiency of Induced Differentiation of Various Potato Tissues. China Biotechnology, 2016, 36(10): 53-59.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20161008        https://manu60.magtech.com.cn/biotech/CN/Y2016/V36/I10/53

[1] Ahmad R, Abdullah Z. Salinity induced changes in the growth and chemical composition of potato. Pakistan Journal of Botany, 1979, 11(2): 103-112.
[2] Li Y, Tang W, Chen J, et al. Development of marker-free transgenic potato tubers enriched in caffeoylquinic acids and flavonols. Journal of Agricultural and Food Chemistry, 2016, 64(14): 2932-2940.
[3] Ahmad R, Kim M D, Back K H, et al. Stress-induced expression of choline oxidase in potato plant chloroplasts confers enhanced tolerance to oxidative, salt and drought stresses. Plant Cell Reports, 2008, 27(4): 687-698.
[4] De Block M. Genotype-independent leaf disc transformation of potato (Solanum tuberosum) using Agrobacterium tumefaciens. Theoretical and Applied Genetics, 1988, 76(5): 767-774.
[5] 张陈明,胡宗利,陈国平.根癌农杆菌介导转化马铃薯与抗病毒基因工程.生物技术通报,2008,06:30-35. Zhang C M, Hu Z L, Cheng G P. Agrobacterium tumefaciens-mediated transformation of potato with antiviral gene engineering. Biotechnology Bulletin, 2008, 06: 30-35.
[6] Gustafson V, Mallubhotla S, MacDonnell J, et al. Transformation and plant regeneration from leaf explants of Solanum tuberosum L. cv. ‘Shepody’. Plant Cell, Tissue and Organ Culture, 2006, 85(3): 361-366.
[7] Sheerman S, BevanM. A rapid transformation method for Solanum tuberosum using binary Agrobacterium tumefaciens vectors. Plant Cell Reports, 1988, 7(1): 13-16.
[8] Park Y D, Ronis D H, Boe A A, et al. Plant regeneration from leaf tissues of four North Dakota genotypes of potato (Solanum tuberosum L.). American Potato Journal, 1995, 72(6):329-338.
[9] An G, Watson B D, Chiang C C. Transformation of tobacco, tomato, potato, and Arabidopsis thaliana using a binary Ti vector system. Plant Physiology, 1986, 81(1): 301-305.
[10] Gururani M A, Upadhyaya C P, Baskar V, et al. Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum through inducing changes in the expression of ROS-scavenging enzymes and improved photosynthetic performance. Journal of Plant Growth Regulation, 2013, 32(2): 245-258.
[11] Beaujean A, Sangwan R S, Lecardonnel A, et al. Agrobacterium-mediated transformation of three economically important potato cultivars using sliced internodal explants:an efficient protocol of transformation. Journal of Experimental Botany, 1998, 49(326): 1589-1595.
[12] Mortimer C L, Misawa N, Ducreux L, et al. Product stability and sequestration mechanisms in Solanum tuberosum engineered to biosynthesize high value ketocarotenoids. Plant Biotechnology Journal, 2016, 14(1): 140-152.
[13] Heeres P. Transformation of a large number of potato varieties: genotype-dependent variation in efficiency and somaclonal variability. Euphytica, 2002, 124(1): 13-22.
[14] Chakravarty B. Genetic transformation in potato: approaches and strategies. American Journal of Potato Research, 2007, 84(4): 301-311.
[15] Banerjee A K, Prat S, Hannapel D J. Efficient production of transgenic potato (S. tuberosum L. ssp. andigena) plants via Agrobacterium tumefaciens-mediated transformation. Plant Science, 2006, 170(4): 732-738.
[16] Dale P J, Hampson K K. An assessment of morphogenic and transformation efficiency in a range of varieties of potato (Solanum tuberosum L.). Euphytica, 1995, 85(1-3): 101-108.
[17] Trujillo C. One-step transformation of two Andean potato cultivars (Solanum tuberosum L. subsp. andigena). Plant Cell Reports, 2001, 20(7): 637-641.
[18] Sharma K K, Bhatnagar-Mathur P, Thorpe T A. Genetic transformation technology: status and problems. In Vitro Cellular & Developmental Biology-Plant, 2005, 41(2): 102-112.
[19] 贾翠翠,季静,王罡,等.过表达谷胱甘肽合成酶基因增强烟草对镉的耐受性.中国生物工程杂志,2014,10:79-86. Jia C C, Ji J, Wang G, et al. Over-expression of glutathione synthetase gene enhances cadmium tolerance in transgenic tobacco plant. China Biotechnology, 2014, 10: 79-86.
[20] 秦静远,王军利,王富容.植物组织培养中的玻璃化现象.杨凌职业技术学院学报,2004,3(2):51-53. Qin J Y, Wang J L, Wang F R. Plant tissue culture vitrification.Yangling Vocational and Technical College, 2004, 3(2): 51-53.
[21] 周鹤峰,邵敏,葛正龙.根癌农杆菌介导的马铃薯茎段遗传转化条件的研究.河南农业大学学报,2008,42:345-349. Zhou H F, Shao M, Ge Z L. Agrobacterium-mediated genetic transformation of potato stem segments conditions. Journal of Henan Agricultural University, 2008, 42: 345-349.
[22] 方贯娜,庞淑敏.马铃薯愈伤组织再生体系的研究进展.中国马铃薯,2012,5:307-310. Fang G N, Pang S M. Advances in potato callus regeneration system. Chinese Potato Journal, 2012, 5:307-310.
[23] Visser R G, Richard G F. Regeneration and transformation of potato by Agrobacterium tumefaciens in Plant Tissue Culture Manual. Springer Netherlands, 1991.301-309.

[1] 何伟,祝蕾,刘欣泽,安学丽,万向元. 玉米遗传转化与商业化转基因玉米开发*[J]. 中国生物工程杂志, 2021, 41(12): 13-23.
[2] 安婷,季静,王昱蓉,马志刚,王罡,李倩,杨丹,张松皓. 百合鳞片的诱导分化及遗传转化效率分析[J]. 中国生物工程杂志, 2018, 38(1): 25-31.
[3] 夏惠, 刘磊, 王秀, 沈妍秋, 郭雨伦, 梁东. 苹果6-磷酸山梨醇脱氢酶基因启动子逆境诱导表达特性研究[J]. 中国生物工程杂志, 2017, 37(6): 50-55.
[4] 周于聪, 谢秋瑾, 宋凯, 杨朝晖, 陈捷, 李雅乾. 改良ATMT转化技术在深绿木霉基因敲除中的应用[J]. 中国生物工程杂志, 2015, 35(12): 58-64.
[5] 聂利珍, 于肖夏, 李国婧, 孙杰, 姜超, 于卓. Rd29A启动子驱动AtCDPK1基因转化马铃薯的研究[J]. 中国生物工程杂志, 2015, 35(11): 13-22.
[6] 王永刚, 马燕林, 马建忠, 马雪青, 任海伟. 马铃薯α-淀粉酶在毕赤酵母中的表达、纯化及其酶学性质的研究[J]. 中国生物工程杂志, 2014, 34(9): 56-62.
[7] 秦翠鲜, 陈忠良, 桂意云, 汪淼, 周建辉, 廖青, 李杨瑞, 黄东亮. 农杆菌介导甘蔗愈伤组织遗传转化体系的优化[J]. 中国生物工程杂志, 2013, 33(9): 66-72.
[8] 朱彩虹, 李水根, 齐力旺, 韩素英. 农杆菌介导的日本落叶松胚性细胞遗传转化研究[J]. 中国生物工程杂志, 2013, 33(5): 75-80.
[9] 李美玉, 李锐, 于敏, 王胜华, 陈放. 根癌农杆菌介导的金发草遗传转化条件的优化[J]. 中国生物工程杂志, 2013, 33(1): 41-46.
[10] 霍培, 季静, 王罡, 关春峰, 金超. 番茄红素β-环化酶基因的玉米转化及 后代遗传分析[J]. 中国生物工程杂志, 2012, 32(07): 43-48.
[11] 汪运洋, 王春梅, 陈琛, 施定基. 模式生物小立碗藓遗传转化系统的研究进展[J]. 中国生物工程杂志, 2012, 32(01): 103-108.
[12] 邹智 杨礼富 王真辉 袁坤. 巴西橡胶树转基因研究现状与展望[J]. 中国生物工程杂志, 2010, 30(01): 85-92.
[13] 赵华 赵进 董银卯 何聪芬 钟秦. 转TaDREB基因提高芦荟抗低温特性的研究[J]. 中国生物工程杂志, 2009, 29(09): 0-0.
[14] 侯春喜 赵寿经 梁彦龙 王建华. 人参遗传转化研究进展[J]. 中国生物工程杂志, 2009, 29(09): 0-0.
[15] 陈国梁,张金文,王蒂. 马铃薯gbss、ssⅡ和ss Ⅲ基因片段的融合及其RNAi载体的构建[J]. 中国生物工程杂志, 2008, 28(8): 51-56.