Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2015, Vol. 35 Issue (11): 13-22    DOI: 10.13523/j.cb.20151103
研究报告     
Rd29A启动子驱动AtCDPK1基因转化马铃薯的研究
聂利珍1, 于肖夏1, 李国婧1, 孙杰2, 姜超1, 于卓1
1. 内蒙古农业大学农学院 呼和浩特 010019;
2. 内蒙古农牧业科学院 呼和浩特 010031
Study on Transgenic Potato Contained AtCDPK1 Gene Drived by Rd29A Promoter
NIE Li-zhen1, YU Xiao-xia1, LI Guo-jing1, SUN Jie2, JIANG Chao1, YU Zhuo1
1. Agronomy College, Inner Mongolia Agricultural University, Huhhot 010019, China;
2. Inner Mongolia Academy of Agricultural AnimalHusbandry Sciences, Hohhot 010031, China
 全文: PDF(1833 KB)   HTML
摘要:

为获得抗旱性强、生长正常的转基因马铃薯植株,以野生拟南芥生态型(Col-0)为材料,利用PCR和DNA重组技术,克隆了拟南芥 Rd29A (responsive to dehydration)基因ATG上游+83bp至-1 441bp共1 524bp的启动子区域,其DNA序列与已知拟南芥Rd29A 5'端启动子序列同源性为100%;构建了Rd29A启动子驱动 AtCDPK1 基因表达的植物表达载体pCHFRd-CDPK1。以马铃薯品种‘费乌瑞它’的试管微型薯为材料,利用农杆菌介导法,将构建成功的pCHFRd-CDPK1载体转入马铃薯中,经筛选与植株再生,获得抗性再生植株。通过PCR和Southern blot检测显示,Rd29A启动子驱动的 AtCDPK1 基因已整合在马铃薯的基因组中。利用PEG模拟干旱胁迫后,经RT-PCR分析证实,当用20% 的PEG 胁迫转基因马铃薯植株时,Rd29A启动子驱动 AtCDPK1 基因表达的转基因马铃薯各个株系中 AtCDPK1 基因表达量明显增强,而在无胁迫的条件下,植株中 AtCDPK1 基因基本不表达;同时发现35S 控制 AtCDPK1 转基因植株在PEG 胁迫前后,基因转录未见明显差异。形态学观察还表明,在30% PEG胁迫下,转基因植株能正常生长,其长势优于未转基因的对照,且对照植株略有萎焉。该结果可为进一步利用逆境诱导型启动子驱动抗逆基因在农作物中的表达研究及其遗传改良提供依据。

关键词: AtCDPK1基因转基因干旱胁迫马铃薯拟南芥Rd29A启动子    
Abstract:

In order to obtain normal growth and resistant drought transgenic potato, using Arabidopsis thaliana (Columbia ecotype) as material, DNA sequence of AtRd29A gene ATG upstream from +83bp to -1 441bp is cloned with PCR and recombinant DNA technologies. The sequence of bases was entirely consistent with that of promoter of the known gene. The plant expression vector pCHFRd-CDPK1 of AtCDPK1 gene drived by Rd29A promoter was constructed, and transformed pCHFRd-CDPK1 into virus-free miniature of potato cultivar‘Favorita’using Agrobacterium-mediated method. After plant selection and regeneration, regenerated plants with resistance were obtained successfully. The PCR and Southern blotting analysis proved that the AtCDPK1 gene has been integrated in the genome of the potato. After drought stress using 30% PEG, RT-PCR analysis proved that the transcript levels of AtCDPK1 gene drived by Rd29A promoter in transgenic potato plants were significantly higher. AtCDPK1 gene drived by Rd29A promoter in transgenic potato plants is barely detectable in the water treatment control. However, expression of AtCDPK1 gene drived by 35S promoter did not make significant difference in transgenic potato plants between PEG stress treatment and water treatment. Morphological observation showed that transgenic plants can grow normally after 30% PEG stress, the plants growing was better than non-transgenic plants, and control plants occur slightly wilt. This research will lay the foundation for further improved stress tolerance of crops by expression of resistant gene drived by stress-inducible promoter in the crop.

Key words: AtRd29A promoter    Drought stress    Potato    Transgenic gene    AtCDPK1 gene
收稿日期: 2015-06-11 出版日期: 2015-11-24
ZTFLH:  Q785  
基金资助:

国家科技支撑计划(2012BAD02B05),内蒙古自然科学基金重大项目(2013ZD03),内蒙古农牧业科技创新项目(2011-CXJJM01-4)资助项目

通讯作者: 于卓     E-mail: yuzhuo58@sina.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
聂利珍
于肖夏
李国婧
孙杰
姜超
于卓

引用本文:

聂利珍, 于肖夏, 李国婧, 孙杰, 姜超, 于卓. Rd29A启动子驱动AtCDPK1基因转化马铃薯的研究[J]. 中国生物工程杂志, 2015, 35(11): 13-22.

NIE Li-zhen, YU Xiao-xia, LI Guo-jing, SUN Jie, JIANG Chao, YU Zhuo. Study on Transgenic Potato Contained AtCDPK1 Gene Drived by Rd29A Promoter. China Biotechnology, 2015, 35(11): 13-22.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20151103        https://manu60.magtech.com.cn/biotech/CN/Y2015/V35/I11/13

[1] 刘玲. 内蒙古马铃薯产业化问题研究. 呼和浩特:内蒙古农业大学,农学院,2003. Liu L. Study on Industrialization of Potato in Inner Mongolia Autonomous Region. Huhhot: Inner Mongolia Agricultural University, Agricultural College,2003.
[2] 孙国凤,马鑫. 农业生物技术发展现状与展望. 农业展望,2010,(11):56-59. Sun G F, Ma X. Development status and prospect of agricultural biotechnology. Agricultural Outlook, 2010, (11): 56-59.
[3] Yeo E T, Kwon H B, Han S E, et al. Genetic engineering of drought-resistant potato plants by introduction of the trehalose-6-phosphate synthase ( TPS1 ) gene from Saccharomyces cerevisiae. Molecular Cells, 2000, 10(3): 263-268.
[4] 张宁. 应用甜菜碱醛脱氢酶基因工程提高马铃薯抗逆性的研究. 兰州:甘肃农业大学,农学院,2004. Zhang N. Studies on Increasing Stress Resistance of Potato by Genetic Engineering of Betaine Aldehyde Dehydrogenase. Lanzhou: Gansu Agricultural University, Agricultural College,2004.
[5] Roberts D M, Harmon A C. Calcium-modulated proteins: targets of intracellular calcium signals in higher plants. Annual Review of Physiol Plant Molecular Biology, 1992, 43: 375-414.
[6] Hrabak E M. Plant Protein Kinases: Calcium-dependent Protein Kinases and Their Relatives. In: Kreis M, Walker J C. Advances in Botanical Sciences. New York: Academic Press, 2000: 185-223.
[7] Harmon A C, Gribskov M, Gubrum E, et al. The CDPK superfamily of protein kinases. New Phytologist, 2001, 151: 175-183.
[8] Harper J F, Breton G, Harmon A C. Decoding Ca2+ signals through plant protein kinases. Annual Review of Plant Biology, 2004, 55: 263-288.
[9] Hetherington A, Trewavas A. Calcium-dependent protein kinase in pea shoot membranes. FEBS Letters, 1982, 145(1): 67-71.
[10] Sheen J. Ca2+-dependent protein kinases and stress signal transduction in plants. Science, 1996, 274(5294): 1900-1902.
[11] 卢慧星. 拟南芥 AtCDPK1 参与非生物胁迫响应和ABA信号途径的证据. 呼和浩特: 内蒙古农业大学,生命科学院,2009. Lu H X. The Evidence of AtCDPK1 Involved in Abiotic Stresses and ABA Signaling Pathway. Huhhot: Inner Mongolia Agricultural University, College of Life Science,2009.
[12] Zou J J, Wei F J, Wang C, et al. Arabidopsis calcium-dependent protein kinase CPK10 functions in abscisic acid and Ca2+-mediated stomatal regulation in response to drought stress. Plant Physiol, 2010, 154(3): 1232-1243.
[13] 路静,赵华燕,何奕昆,等. 高等植物启动子及其应用研究进展. 自然科学进展,2004,14( 8):856-862. Lu J, Zhao H R, He Y K, et al. Research and application of promoter in higher plants . Progress of Natural Science, 2004, 14(8): 856-862.
[14] Gittins J R1, Pellny T K, Hiles E R, et al. Transgene expression driven by heterologous ribulose-1, 5-bisphosphate carboxylase/oxygenase small-subunit gene promoters in the vegetative tissues of apple (Malus pumila Mill.) . Planta, 2000, 210(2): 232-240.
[15] 纪巍,李杰,朱延明,等.不同启动子调控的 DREB1A 基因对黄瓜的遗传转化.东北农业大学学报,2005,36(4):442-447. Ji W, Li J, Zhu Y M,et al. DREB1A gene drived by different promoters transformation into Cucumissativus. Journal of Northeast Agricultural University, 2005, 36(4): 442-447.
[16] 聂利珍,于肖夏,李国婧,等. 拟南芥 AtCDPK1 基因克隆与转化马铃薯的研究.西北植物学报,2015,35(3):447-453. Nie L Z, Yu X X, Li G J, et al. Cloning and Transformation into potato of AtCDPK1 gene from Arabidopsis thaliana. Acta Botanica Boreall-occidentalia Sinica, 2015, 35(3): 447-453.
[17] Xiong L, Schumaker K S, Zhu J K. Cell signaling during cold, drought, and salt stress. Plant Cell, 2002, 14: S165-S183.
[18] ZHu J K, Hasengawa P M, Bressan R A, et al. Molecular aspects of osmotic stress in plants. Critical Reviews in Plant Sciences, 1997, 16(3): 253-277.
[19] Hasegawa P M, Bressan R A, Zhu J K, et al. Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology and Plant Molecular Biology, 2000, 51: 463-499.
[20] 聂利珍. 拟南芥 AtCDPK1 在响应丁香假单胞菌和非生物胁迫中的功能分析. 呼和浩特:内蒙古农业大学,生命科学院,2008. Nie L Z. Functional Analysis of AtCDPK1 in Arabidopsis Response to Pseudomonas syringae and Abiotic Stresses. Huhhot: Inner Mongolia Agricultural University, College of Life Science,2008.
[21] Yamaguchi, Shinozaki K, Shinozaki K. Arabidopsis DNA encoding two desiccation responsive rd29A genes. Plant Physiol, 1993, 101: 1119-1120.
[22] Shinozaki K, Yamaguchi, Shinozaki K. Gene expression and signal transduction in water stress response. Plant Physiol, 1997, 115: 327-334.
[23] Lin Q, Li J,Zhang G Y, et al. Isolation of cDNAs encoding two distinct transcription factors binding to DRE cis-acting element involved in cold-and drought-induced expression of Arabidopsis rd29A Gene . Tsinghua Science and Technology. 1999, 4(3):256-260.
[24] 刘强,赵南明,Yamaguch S K,等.DREB类转录因子在提高植物抗逆性中的作用.科学通报,2000,45(11):11-17. Liu Q, Zhao N M, Yamaguch S K, et al. The role of DREB transcription factors in improving plant resistance. Chinese Science Bulletin, 2000, 45(11): 11-17.
[1] 梁晋刚,张旭冬,毕研哲,王颢潜,张秀杰. 转基因抗虫玉米发展现状与展望*[J]. 中国生物工程杂志, 2021, 41(6): 98-104.
[2] 何伟,祝蕾,刘欣泽,安学丽,万向元. 玉米遗传转化与商业化转基因玉米开发*[J]. 中国生物工程杂志, 2021, 41(12): 13-23.
[3] 梁振鑫,刘芳,张玮,刘庆友,李力. 抗p185 erb B2人鼠嵌合抗体ChAb26转基因小鼠乳腺生物反应器的制备与验证 *[J]. 中国生物工程杂志, 2019, 39(8): 40-51.
[4] 王友华,邹婉侬,柳小庆,王兆华,孙国庆. 全球转基因玉米专利信息分析与技术展望 *[J]. 中国生物工程杂志, 2019, 39(12): 83-94.
[5] 杨飞芸,杨天瑞,刘坤,崔爽,王瑞刚,李国婧. 异源表达CiRS基因拟南芥的黄酮代谢及抑菌能力研究 *[J]. 中国生物工程杂志, 2019, 39(11): 22-30.
[6] 曾强,孟秋成,邓力华,李锦江,于江辉,翁绿水,肖国樱. 抗草甘膦、抗螟虫水稻E1C608的鉴定和重要表型特征分析 *[J]. 中国生物工程杂志, 2019, 39(11): 31-38.
[7] 陈秀秀,吴成林,周丽君. 人源抗体制备及临床应用研究进展 *[J]. 中国生物工程杂志, 2019, 39(10): 90-96.
[8] 徐琳杰,刘培磊,李文龙,孙卓婧,宋贵文. 国际转基因标识制度变动趋势分析及对我国的启示 *[J]. 中国生物工程杂志, 2018, 38(9): 94-98.
[9] 韩明明,罗玉萍. 内源CD133 +细胞示踪小鼠模型的制备和鉴定 *[J]. 中国生物工程杂志, 2018, 38(6): 58-62.
[10] 周天盟,刘旭霞. 论预防原则在欧盟转基因生物监管中的困境与出路 *——基于意大利Fidenato案的分析[J]. 中国生物工程杂志, 2018, 38(6): 95-102.
[11] 姚民,朱淑华,李佛生,张士彦,唐琳. 异源表达AtCYSa基因烟草的耐盐和抗虫特性分析[J]. 中国生物工程杂志, 2018, 38(4): 8-16.
[12] 王友华,蔡晶晶,杨明,张恬,任红梅,邹婉浓,孙国庆. 全球转基因大豆专利信息分析与技术展望[J]. 中国生物工程杂志, 2018, 38(2): 116-125.
[13] 王嘉祯,姚伦广,王峰,阚云超,罗金萍,黄倩倩,段建平. 家蚕中肠特异启动子P56的克隆及活性分析 *[J]. 中国生物工程杂志, 2018, 38(2): 13-17.
[14] 崔帅,王作平,于江辉,肖国樱. 转基因水稻BPL9K-2事件特异性检测方法的建立 *[J]. 中国生物工程杂志, 2018, 38(11): 32-41.
[15] 刘旭霞, 张楠. 中美转基因作物种植管理制度比较[J]. 中国生物工程杂志, 2017, 37(8): 119-127.