Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (9): 56-62    DOI: 10.13523/j.cb.20140909
研究报告     
马铃薯α-淀粉酶在毕赤酵母中的表达、纯化及其酶学性质的研究
王永刚1, 马燕林1, 马建忠1, 马雪青2, 任海伟1
1. 兰州理工大学生命科学与工程学院 兰州 730050;
2. 中国农业科学院兰州兽医研究所 家畜疫病病原生物学国家重点试验室 国家口蹄疫参考试验室 兰州 730046
The Study on Expression,Purification and Characterization of α-amylase from Solanum tuberosum in P.pastoris
WANG Yong-gang1, MA Yan-lin1, MA Jian-zhong1, MA Xue-qing2, REN Hai-wei1
1. College of Life Science and Engingeering, Lanzhou University of Technology, Lanzhou 730050 China;
2. State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
 全文: PDF(743 KB)   HTML
摘要:

采用RT-PCR法扩增马铃薯夏波蒂的α-淀粉酶成熟肽基因,将其亚克隆至毕赤酵母表达载体pPIC9k上,Sac II 线性化重组表达载体,电击转化毕赤酵母GS115感受态细胞,构建重组酵母GS115/pPIC9k-amy,利用锥虫蓝法筛选获得高活性转化子(GSamyA5),以终浓度为0.5%甲醇诱导该重组菌表达α-淀粉酶,通过Ni2+-NTA agarose亲和层析纯化,并对其酶学性质进行研究。结果表明:该酶的最适反应温度为45℃,40~50℃酶活较稳定,保温50 min,残留相对活力达92.6%;最适反应pH值为6.0,并在pH 6.0~7.0范围内酶活保持稳定。Ca2+、K+可促进酶反应,以Ca2+影响为最,相对酶活力提高到125%;Cu2+,Fe2+,Fe3+,Zn2+对该酶有显著抑制作用;Mn2+,Mg2+对酶有微弱抑制作用,Li+、Na+对酶活影响不大。

关键词: α-淀粉酶马铃薯毕赤酵母表达与纯化酶学性质    
Abstract:

The gene of α-amylase was amplified by through RT-PCR with Solanum tuberosum cv.Shepody cDNA as template, which was subcloned into vector pPIC9k and the recombinant plasmid pPIC9K-amy was linearzed with Sac II, then transformed into P.pastoris GS115 by electroporation. The high expressed amylase active strain GSamyA5 was attained by Trypan blue-BMMY medium screening and induced to express the enzyme with 0.5% methanol for 3 days under the 30℃, and fermentation broth was purified by Ni2+-NTA agarose. the enzyme characterization was studied. The result showed that The enzyme activity was stable between 40~50℃ with maximum activity at 45℃ and the activity hold 92.6% keeping 50min. The enzyme activity was stable between pH6.0~7.0 with maximum activity at pH6.0. Ca2+ and K+ had a stimulating effect on the recombinant amylase. The relative enzyme activity was up to 125% with Ca2+, Cu2+, Fe2+, Fe3+ and Zn2+ had an significantly inhibitory effect on the recombinant amylase.

Key words: α-amylase    Solanum tuberosum    P. pastori    Expression and purification    Enzyme characterization
收稿日期: 2014-02-11 出版日期: 2014-09-25
ZTFLH:  Q556.2  
基金资助:

国家自然科学基金(31060041);甘肃省自然科学基金(1212RJYA008,1212RJYA034)资助项目

通讯作者: 马建忠     E-mail: lab_ma@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

王永刚, 马燕林, 马建忠, 马雪青, 任海伟. 马铃薯α-淀粉酶在毕赤酵母中的表达、纯化及其酶学性质的研究[J]. 中国生物工程杂志, 2014, 34(9): 56-62.

WANG Yong-gang, MA Yan-lin, MA Jian-zhong, MA Xue-qing, REN Hai-wei. The Study on Expression,Purification and Characterization of α-amylase from Solanum tuberosum in P.pastoris. China Biotechnology, 2014, 34(9): 56-62.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20140909        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I9/56


[1] 谷军. α-淀粉酶的生产与应用. 生物技术, 1994, 4(3): 1-5. Gu J. The production and application of alpha amylase. Biotechnology, 1994, 4(3): 1-5.

[2] Antje C. α-amylse: In:Anjet C(ed):Springer Handbook of Enzymes. NewYork: Springer-Varlag, 2003. 1-39.

[3] 刘逸寒, 李玉, 路福平,等. 耐酸性高温α-淀粉酶突变基因在大肠杆菌中的表达及酶学性质研究.食品发酵与工业, 2007, 33(2): 36-41. Liu Y H, Li Y, Lu F P, et al. Expression of the acid-resistant and heat-stable α-amylase mutation gene in Escherichia coli and study on characterization of the enzyme. Food and Fermentation Industries, 2007, 33(2): 36-41.

[4] Zhang J, Zeng R. Molecular cloning and expression of an extracellular α-amylase gene from an Antarctic deep sea psychrotolerant Pseudomonas stutzeristrain 7193. World Journal of Microbiology and Biotechnology, 2011, 27(4): 841-850.

[5] 刘洋, 沈微, 石贵阳,等. 中温α-淀粉酶的酶学性质研究. 食品科学. 2008, 29(9): 373-377. Liu Y, Shen W, Shi G Y, et al. Enzymatic properties of mesophilic α-amylase from Bacillus amyloliquefaciens M23. Food Science, 2008, 29(9): 373-377.

[6] Dandan Niu, Zhirui Zuo, Gui-Yang Shi,et al. High yield recombinant thermostable α-amylase production using an improved Bacillus licheniformis system. Microb Cell Fact, 2009, 8:58.

[7] Hakata M, Kuroda M, Miyashita T, et al. Suppression of α-amylase genes improves quality of rice grain ripened under high temperature. Plant Biotechnology Journal, 2012, 10(9): 1110-1117.

[8] Lee C C, Along D W, Robertson G H. An E.coli expression system for the extracellular secretion of barley alpha-amylase. J Protein Chem., 2001, 20(3): 233-237.

[9] 董晨, 曹娟, 张迹, 等. 耐高温α-淀粉酶基因在枯草芽孢杆菌中的高效表达. 应用与环境生物学报, 2008,14(4):534-538. Dong C, Cao J, Zhang J, et al. High-level expression of thermostable α-amylase in Bacillus subtilis. Chin J Appl Environ Biol, 2008,14(4)534-538.

[10] Ying Q, Zhang C, Guo F, et al. Secreted expression of a hyperthermophilic α-amylase gene from Thermococcus sp. HJ21 in Bacillus subtilis. Journal of Molecular Microbiology and Biotechnology, 2013, 22(6): 392-398.

[11] 陈陶声. 酒精发酵研究. 北京: 科学出版社, 1987.

[12] 周广麒, 余伟民. 马铃薯酒精发酵工艺的研究. 中国酿造, 2008, 8: 36-38. Zhou G Q, Yu W M. Study on the technology of potato ethanol fermentation. China Brew, 2008, 8: 36-38.

[13] 林俊涵. 毕赤酵母高密度发酵工艺的研究. 中国生物工程杂志, 2009, 29(5): 120-125. Lin J H. High density fermentation control of Pichia pastoris. China Biotechnology, 2009, 29(5): 120-125.

[14] 陈苗, 商汉桥.毕赤酵母表达操作手册. 美国: Invitrogen公司.

[15] 马向东, 马立新, 薛征峰,等. 一种鉴定α-淀粉酶活性及其产生菌的新方法. 华中农业大学学报, 2000, 19(5): 456-460. Ma X D, Ma L X, Xue Z F, et al. A new method to identify α-amylase activity and its producing bacteria. Journal of Hua zhong Agricultural University, 2000, 19(5): 456-460.

[16] 王秀奇, 秦淑媛, 高天慧,等. 基础生物化学实验. 北京: 高等教育出版社, 2006. 276-277.

[17] 王永刚, 马建忠, 马雪青, 等. 马铃薯淀粉酶基因的克隆及生物信息学分析. 食品科学, 2010, 19: 048. Wang Y, Ma J, Ma X, et al. Cloning and sequence analysis of potato α-amylase gene. Food Science, 2010, 19: 048.

[18] Juge N, Nøhr J, Le Gal-Coëffet M F, et al. The activity of barley α-amylase on starch granules is enhanced by fusion of a starch binding domain from Aspergillus niger glucoamylase. Biochimica et Biophysica Acta, 2006, 1764:275-284.

[19] Shahhoseini M, Ziaee A A, Ghaemi N. Expression and secretion of an alpha-amylase gene from a native strain of Bacillus licheniformis in Escherichia coli by T7 promoter and putative signal peptide of the gene. J Appl Microbiol,2003,95: 1250-1254.

[20] Ghang D M, Yu L, Lim M H, et al. Efficient one-step starch utilization by industrial strains of Saccharomyces cerevisiae expressing the glucoamylase and alpha-amylase genes from Debaryomyces occidentalis, Biotechnol. Lett.,2007, 29(8): 1203-1208.

[21] 周春海. 小麦β-淀粉酶生产啤酒用糖浆糖化工艺条件的优化. 现代食品科技, 2012, 28(3): 297-299. Zhou C H. Optimization of saccharification conditions of syrup for brewing produced by wheat β-amylase. Modern Food Science and Technology. 2012, 28(3): 297-299.

[22] 王永刚. 马铃薯α-淀粉酶基因和黑曲霉γ-淀粉酶基因的分子克隆及其在毕赤酵母菌. 兰州, 兰州理工大学, 2010.

[1] 陈中伟,郑璞,陈鹏程,吴丹. 耐热植酸酶突变体的筛选及性质研究 *[J]. 中国生物工程杂志, 2021, 41(2/3): 30-37.
[2] 梁爱玲,刘文婷,武攀,李倩,高健,张洁,刘卫东,贾士儒,郑迎迎. 来源于Exophiala aquamarina的新型玉米赤霉烯酮水解酶的性质及底物结合中心关键氨基酸的功能研究*[J]. 中国生物工程杂志, 2021, 41(10): 19-27.
[3] 陈鑫洁,钱芷兰,刘启,赵清,张元兴,蔡孟浩. 毕赤酵母底盘芳香族氨基酸合成途径改造生产肉桂酸及对香豆酸*[J]. 中国生物工程杂志, 2021, 41(10): 52-61.
[4] 石鹏程, 纪晓俊. 酵母系统表达人表皮生长因子研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 72-79.
[5] 朱衡,张继福,张云,胡云峰. 环氧交联剂和氨基载体固定化海洋假丝酵母脂肪酶*[J]. 中国生物工程杂志, 2020, 40(5): 57-68.
[6] 马翠萍,刘朵朵,潘炳菊,申会涛,宋亚囝. 来源于嗜碱芽孢杆菌N16-5甘露聚糖利用基因簇的乙酰酯酶AesA的克隆及性质分析*[J]. 中国生物工程杂志, 2020, 40(3): 65-71.
[7] 朱衡,张继福,张云,孙爱君,胡云峰. 聚乙二醇二缩水甘油醚交联氨基载体LX-1000EA固定化脂肪酶 *[J]. 中国生物工程杂志, 2020, 40(1-2): 124-132.
[8] 田园,李艳玲. 基于重组毕赤酵母的fusaruside生物合成 *[J]. 中国生物工程杂志, 2019, 39(7): 8-14.
[9] 王菲,胡春辉,于浩. 6-羟基烟酸3-单加氧酶(NicC)催化反应机理研究 *[J]. 中国生物工程杂志, 2019, 39(7): 15-23.
[10] 彭强强,刘启,徐名强,张元兴,蔡孟浩. 新型重组毕赤酵母产人胰岛素前体的表达工艺研究 *[J]. 中国生物工程杂志, 2019, 39(7): 48-55.
[11] 王鑫淼,张康,陈晟,吴敬. 嗜热网球菌纤维二糖差向异构酶在枯草芽孢杆菌中的表达及发酵优化 *[J]. 中国生物工程杂志, 2019, 39(7): 24-31.
[12] 严建,贾禄强,丁健,史仲平. 甲醇周期诱导控制强化毕赤酵母生产猪α干扰素 *[J]. 中国生物工程杂志, 2019, 39(6): 32-40.
[13] 谢玉锋,韩雪梅,路福平. 副干酪乳杆菌β-葡糖苷酶的表达、纯化及酶学性质研究 *[J]. 中国生物工程杂志, 2019, 39(5): 72-79.
[14] 姚银,闵琪,熊海容,张莉. 木聚糖酶和甘露聚糖酶在毕赤酵母中的共表达及产酶分析 *[J]. 中国生物工程杂志, 2019, 39(3): 37-45.
[15] 朱梦露,王雪雨,刘鑫,路福平,孙登岳,秦慧民. 一种新型亮氨酸5-羟化酶NmLEH的异源表达、纯化及酶学性质分析 *[J]. 中国生物工程杂志, 2019, 39(12): 24-34.