Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (4): 49-58    DOI: 10.13523/j.cb.1911045
技术与方法     
环氧树脂固定化的Bacillus sp. DL-2胞外蛋白酶在拆分(±)-乙酸苏合香酯中的应用 *
董璐1,2,张继福4,张云1,胡云峰1,3,**()
1 中国科学院南海海洋研究所 中国科学院热带海洋生物资源与生态重点实验室 广东省海洋药物重点实验室 广州 510301
2 中国科学院大学 北京 100049
3 南方海洋科学与工程广东省实验室(广州) 广州 511458
4 广东省中医院 广州 510120
Immobilization of Extracellaluar Proteases of Bacillus sp. DL-2 Using Epoxy Resin to Asymmetrically Hydrolyze (±)-1-Phenylethyl Acetate
DONG Lu1,2,ZHANG Ji-fu4,ZHANG Yun1,HU Yun-feng1,3,**()
1 Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medical, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
4 Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
 全文: PDF(1352 KB)   HTML
摘要:

环氧基是一个非常活跃的基团,它能与酶、蛋白质和核酸等生物分子发生反应形成共价键,有利于生物分子的固定化。经共价结合法固定化的酶其稳定性及重复使用性可得到显著提高。用环氧树脂ES-103B为载体采用共价结合法对海洋细菌Bacillus sp. DL-2的胞外蛋白酶进行固定化,经过单因素实验优化条件得出最优固定化条件为:pH 8.0的胞外蛋白酶溶液,25 g/L的ES-103B,45℃下反应8h。采用此最优条件下的固定化酶拆分(±)-乙酸苏合香酯制备出了e.e.p=97.5%的(R)-1-苯乙醇(产率为45.0%)和e.e.s=99.2%的(S)-乙酸苏合香酯(产率为83.9%)。该固定化酶拆分(±)-乙酸苏合香酯在重复使用8次后制备出的(R)-1-苯乙醇的e.e.p仍大于90%,且固定化胞外蛋白酶在4℃下具有较好的储存稳定性。

关键词: 环氧树脂ES-103B海洋微生物固定化酶不对称水解(R)-1-苯乙醇(S)-乙酸苏合香酯    
Abstract:

Epoxy group, a very active group, can react with biomolecules such as enzymes, proteins, nucleic acid and form covalent bonds, which is beneficial for the immobilization of biomolecules. Enzymes immobilized on carriers via covalent binding exhibit better stability and reusability than free enzymes. The extracellular proteases of marine bacterium Bacillus sp. DL-2 were immobilized by covalent bonding onto epoxy resin ES-103B. After the the optimization of immobilization conditions, pH 8.0 extracellular proteases solution, 25 g/L epoxy resin ES-103B, and 45 ℃ for 8 h were determined as the optimal conditions for immobilized proteases to asymmetrically hydrolyze (±)-1-phenylethyl acetate, which generated (R)-1-phenylethanol with the e.e.p being 97.5% and the yield being 45.0%, and generated (S)-1-phenylethyl acetate with the e.e.s being 99.2% and the yield being 83.9%, respectively. The the immobilized enzyme could be reused to resolve (±)-1-phenylethyl acetate for eight times and the e.e.p still retained over 90%. Additionally, the immobilized extracellular proteases showed good storage stability at 4℃.

Key words: Epoxy resin ES-103B    Marine bacterium    Immobilized enzyme    Asymmetric hydrolysis    (R)-1-phenylethanol    (S)-1-phenylethyl acetate
收稿日期: 2019-11-28 出版日期: 2020-05-18
ZTFLH:  Q502  
基金资助: * 南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项(GML2019ZD0406);广东省自然科学基金项目(2018A030313151);广东省海洋渔业科技攻关与研发方向项目(A201701C12);中国科学院战略性先导科技专项(XDA11030404);中国科学院“科学”号高端用户项目(KEXUE2018G05)
通讯作者: 胡云峰     E-mail: yunfeng.hu@scsio.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
董璐
张继福
张云
胡云峰

引用本文:

董璐,张继福,张云,胡云峰. 环氧树脂固定化的Bacillus sp. DL-2胞外蛋白酶在拆分(±)-乙酸苏合香酯中的应用 *[J]. 中国生物工程杂志, 2020, 40(4): 49-58.

DONG Lu,ZHANG Ji-fu,ZHANG Yun,HU Yun-feng. Immobilization of Extracellaluar Proteases of Bacillus sp. DL-2 Using Epoxy Resin to Asymmetrically Hydrolyze (±)-1-Phenylethyl Acetate. China Biotechnology, 2020, 40(4): 49-58.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.1911045        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I4/49

图1  使用环氧树脂固定化的Bacillus sp. DL-2胞外蛋白酶拆分(±)-乙酸苏合香酯
环氧树脂类型 ES-1 ES-103B ES-107 EP200 LX-
1000EP
LX-
1000EPC
LX-
1000EPF
LX-
EP120
MC-
300EP
第一次 e.e.p (%) 93.3 93.9 74.4 68.2 87.2 79.7 93.2 67.0 85.5
C (%) 5.1 6.7 2.2 1.3 2.3 1.3 3.4 1.1 1.7
第二次 e.e.p (%) 47.9 84.3 —— —— —— —— 67.1 —— ——
C (%) 0.4 2.4 —— —— —— —— 2.4 —— ——
表1  九种环氧树脂固定化的Bacillus sp. DL-2胞外蛋白酶拆分(±)-乙酸苏合香酯的比较
图2  胞外蛋白酶固定化条件的优化
图3  ES-103B固定化的胞外蛋白酶不对称水解(±)-乙酸苏合香酯制备的(R)-1-苯乙醇和(S)-乙酸苏合香酯的气相图谱
图4  固定化的胞外蛋白酶的重复利用性和储存稳定性
固定化载体 (R)-1-苯乙醇 (S)-乙酸苏合香酯
e.e.p
(%)
C
(%)
YR
(%)
酶浓度
(mg/ml)
底物浓度
(mmol/L)
e.e.p > 90%
的重复使用次数
e.e.s
(%)
C
(%)
YR
(%)
酶浓度
(mg/ml)
底物浓度
(mmol/L)
e.e.s > 90%的
重复使用次数
环氧树脂ES-103B > 97 23 45 320 5 8 > 99 58 84 320 5 1
硅藻土 97 18 41 360 5 2 > 99 64 71 440 2.5 1
表2  ES-103B固定化的Bacillus sp. DL-2胞外蛋白酶与硅藻土固定化的此酶拆分(±)-乙酸苏合香酯的比较
[1] Jadhav D D, Patil H S, Chaya P S , et al. Fungal mediated kinetic resolution of racemic acetates to (R)-alcohols using Fusarium proliferatum. Tetrahedron Letters, 2016,57(41):4563-4567.
doi: 10.1016/j.tetlet.2016.08.084
[2] 邹胜, 黄晴菲, 黄文才 , 等. 手性苯乙醇的制备. 合成化学, 2018,26(4):288-291.
Zou S, Huang Q F, Huang W C , et al. Preparation of chiral phenylethanol. Chinese Journal of Synthetic Chemistry, 2018,26(4):288-291.
[3] Suan C L, Sarmidi M R . Immobilised lipase-catalysed resolution of (R,S)-1-phenylethanol in recirculated packed bed reactor. Journal of Molecular Catalysis B Enzymatic, 2004,28(2-3):111-119.
doi: 10.1016/j.molcatb.2004.02.004
[4] De los Ríos A P, Van Rantwijk F, Sheldon R A . Effective resolution of 1-phenyl ethanol by Candida antarctica lipase B catalysed acylation with vinyl acetate in protic ionic liquids (PILs). Green Chemistry, 2012,14(6):1584-1588.
doi: 10.1039/c2gc35196j
[5] Fan Y X, Xie Z M, Zhang H W , et al. Kinetic resolution of both 1-phenylethanol enantiomers produced by hydrolysis of 1-phenylethyl acetate with Candida antarctica lipase B in different solvent systems. Kinetics and Catalysis, 2011,52(5):686-690.
doi: 10.1134/S0023158411050065
[6] Mihailovic M, Stojanovic M, Banjanac K , et al. Immobilization of lipase on epoxy-activated Purolite® A109 and its post-immobilization stabilization. Process Biochemistry, 2014,49(4):637-646.
doi: 10.1016/j.procbio.2014.01.013
[7] Abaházi E, Lestál D, Boros Z , et al. Tailoring the spacer arm for covalent immobilization of Candida antarctica lipase B-thermal stabilization by bisepoxide-activated aminoalkyl resins in continuous-flow reactors. Molecules, 2016,21(6):767-785.
doi: 10.3390/molecules21060767 pmid: 27304947
[8] Jiang X P, Lu T T, Liu C H , et al. Immobilization of dehydrogenase onto epoxy-functionalized nanoparticles for synthesis of (R)-mandelic acid. International Journal of Biological Macromolecules, 2016,88:9-17.
doi: 10.1016/j.ijbiomac.2016.03.031 pmid: 26995611
[9] Zhao R, Lu J K, Tan T W . Preparation of polyglycidylmethacrylate macropore beads and application in Candida species 99-125 lipase immobilization. Chemical Engineering & Technology, 2011,34(1):93-97.
doi: 10.1252/kakoronbunshu1953.34.93
[10] Tural B, Tarhan T, Tural S . Covalent immobilization of benzoylformate decarboxylase from Pseudomonas putida on magnetic epoxy support and its carboligation reactivity. Journal of Molecular Catalysis B: Enzymatic, 2014,102:188-194.
doi: 10.1002/chir.22477 pmid: 26147067
[11] Zhang D H, Peng L J, Wang Y , et al. Lipase immobilization on epoxy-activated poly (vinyl acetate-acrylamide) microspheres. Colloids and Surfaces B: Biointerfaces, 2015,129:206-210.
doi: 10.1016/j.colsurfb.2015.03.056 pmid: 25863711
[12] 顾恺, 邹树平, 王志才 , 等. 环氧树脂固定化卤醇脱卤酶的研究. 现代化工, 2016,36(11):69-72.
Gu K, Zou S P, Wang Z C , et al. Immobilization of halohydrin dehalogenase by ES-103B epoxy resin. Modern Chemical Industry, 2016,36(11):69-72.
[13] Adrio J L, Demain A L . Microbial enzymes: tools for biotechnological processes. Biomolecules, 2014,4(1):117-139.
doi: 10.3390/biom4010117 pmid: 24970208
[14] Chaud L C S, Lario L D, Bonugli-Santos R C , et al. Improvement in extracellular protease production by the marine antarctic yeast Rhodotorula mucilaginosa L7. New Biotechnology, 2016,33(6):807-814.
doi: 10.1016/j.nbt.2016.07.016 pmid: 27474110
[15] Banerjee G, Ray A K . Impact of microbial proteases on biotechnological industries. Biotechnology & Genetic Engineering Reviews, 2017,33(2):119-143.
doi: 10.1080/02648725.2017.1408256 pmid: 29205093
[16] Wang Y L, Xu S, Li R Q , et al. Characterization of one novel microbial esterase WDEst9 and its use to make L-methyl lactate. Biocatalysis and Biotransformation, 2019,37(3):190-200.
doi: 10.1080/10242422.2018.1526926
[17] Huang J L, Xu Y K, Zhang Y , et al. Utilization of one novel deep-sea microbial protease sin3406-1 in the preparation of ethyl (S)-3-hydroxybutyrate through kinetic resolution. World Journal of Microbiology and Biotechnology, 2018,34(9):124-134.
doi: 10.1007/s11274-018-2513-9 pmid: 30083971
[18] Wang Y L, Xu Y K, Zhang Y , et al. Utilization of deep-sea microbial esterase PHE21 to generate chiral sec-butyl acetate through kinetic resolutions. Chirality, 2018,30(8):1027-1035.
doi: 10.1002/chir.22983 pmid: 29885046
[19] Wang Y L, Xu Y K, Zhang Y , et al. Functional chacterization of salt-tolerant microbial esterase WDEst17 and its use in the generation of optically pure ethyl (R)-3-hydroxybutyrate. Chirality, 2018,30(6):769-776.
doi: 10.1002/chir.22847 pmid: 29573466
[20] Deng D, Zhang Y, Sun A J , et al. Enantio-selective preparation of (S)-1-phenylethanol by a novel marine GDSL lipase MT6 with reverse stereo-selectivity. Chinese Journal of Catalysis, 2016,37(11):1966-1974.
doi: 10.1016/S1872-2067(16)62505-6
[21] Huang J L, Zhang Y, Hu Y F . Functional characterization of a marine Bacillus esterase and its utilization in the stereo-selective production of D-methyl lactate. Applied Biochemistry and Biotechnology, 2016,180(8):1467-1481.
doi: 10.1007/s12010-016-2180-y pmid: 27364331
[22] Wang Y L, Zhang Y, Hu Y F . Functional characterization of a robust marine microbial esterase and its utilization in the stereo-selective preparation of ethyl (S)-3-hydroxybutyrate. Applied Biochemistry and Biotechnology, 2016,180(6):1196-1212.
doi: 10.1007/s12010-016-2161-1 pmid: 27299920
[23] Wang Y L, Zhang Y, Sun A J , et al. Characterization of a novel marine microbial esterase and its use to make D-methyl lactate. Chinese Journal of Catalysis, 2016,37(8):1396-1402.
doi: 10.1016/S1872-2067(16)62495-6
[24] Deng D, Zhang Y, Sun A J , et al. Functional characterization of a novel Dactylosporangium esterase and its utilization in the asymmetric synthesis of (R)-methyl mandelate. Applied Biochemistry and Biotechnology, 2016,180(2):228-247.
doi: 10.1007/s12010-016-2095-7 pmid: 27118549
[25] Deng D, Zhang Y, Sun A J , et al. Functional characterization of a novel marine microbial GDSL lipase and its utilization in the resolution of (±)-1-phenylethanol. Applied Biochemistry and Biotechnology, 2016,179(1):75-93.
doi: 10.1007/s12010-016-1980-4 pmid: 26754423
[26] Liang J Y, Zhang Y, Sun A J , et al. Enantioselective resolution of (±)-1-phenylethanol and (±)-1-phenylethyl acetate by a novel esterase from Bacillus sp. SCSIO 15121. Applied Biochemistry and Biotechnology, 2016,178(3):558-575.
doi: 10.1007/s12010-015-1894-6 pmid: 26467742
[27] Liang J Y, Sun A J, Zhang Y , et al. Functional characterization of a novel microbial esterase identified from the Indian Ocean and its use in the stereoselective preparation of (R)-methyl mandelate. Chinese Journal of Oceanology and Limnology, 2016,34(6):1269-1277.
doi: 10.1007/s00343-016-5164-4
[28] 黄锦龙, 张继福, 胡洁莹 , 等. 深海来源微生物乙酰酯酶的酶学性质鉴定及拆分制备D-乳酸甲酯. 热带海洋学报, 2018,37(4):38-44.
Huang J L, Zhang J F, Hu J Y , et al. Characterization of one deep-sea derived microbial acetyl esterase and its utilization in the preparation of D-methyl lactate through kinetic resolution. Journal of Tropical Oceanography, 2018,37(4):38-44.
[29] 公颜慧, 马三梅, 王永飞 , 等. 新颖深海微生物酯酶EstC11的酶学性质研究及其在手性拆分乙酸苏合香酯中的应用. 微生物学通报, 2018,45(8):1632-1640.
doi: 10.13344/j.microbiol.china.170850
Gong Y H, Ma S M, Wang Y F , et al. Characterization of a novel deep-sea microbial esterase EstC11 for enantioselective resolution of (±)-1-phenylethl acetate. Microbiology China, 2018,45(8):1632-1640.
doi: 10.13344/j.microbiol.china.170850
[30] 黄锦龙, 张云, 孙爱君 , 等. 一种新颖深海微生物羧酸酯酶制备(R)-苯乙醇的研究. 热带海洋学报, 2017,36(3):55-60.
Huang J L, Zhang Y, Sun A J , et al. Enantioselective production of (R)-1-phenylethanol by a novel marine microbial carboxylesterase. Journal of Tropical Oceanography, 2017,36(3):55-60.
[31] Dong L, Xu Y K, Zhang Y , et al. Enantioselective resolution of (±)-1-phenylethyl acetate by extracellular proteases from deep-sea bacterium Bacillus sp. DL-2. Biocatalysis and Biotransformation, 2019,37(6):466-478.
doi: 10.1080/10242422.2019.1616697
[32] Chen C S, Fujimoto Y, Girdaukas G , et al. Quantitative analyses of biochemical kinetic resolutions of enantiomers. Journal of the American Chemical Society, 1982,104(25):7294-7299.
doi: 10.1021/ja020083e pmid: 12071738
[33] 徐珊, 李任强, 张继福 , 等. 使用国产环氧树脂LXEP-120固定化脂肪酶研究. 广西师范大学学报(自然科学版), 2018,36(4):108-118.
Xu S, Li R Q, Zhang J F , et al. Immobilization of lipase using domestic epoxy resin LXEP-120. Journal of Guangxi Normal University (Natural Science Edition), 2018,36(4):108-118.
[34] 张跃冬, 陈必强, 谭天伟 . 固定化脂肪酶催化合成棕榈酸异辛酯的反应器制备研究. 北京化工大学学报(自然科学版), 2007,34(z2):114-117.
Zhang Y D, Chen B Q, Tan T W . Synthesis of iso-octyl palmitate in an immobilized lipase reactor. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2007,34(z2):114-117.
[35] 李宏亮, 胡晶, 谭天伟 . 固定化脂肪酶合成维生素 A 棕榈酸酯. 生物工程学报, 2008,24(5):817-820.
pmid: 18724702
Li H L, Hu J, Tan T W . Immobilized lipase catalyzed synthesis of vitamin A plamitate. Chinese Journal of Biotechnology, 2008,24(5):817-820.
pmid: 18724702
[36] 刘婷婷, 邓利, 鲁吉珂 , 等. 填充床反应器中酶法合成生物蜡酯. 化工进展, 2009,28(5):864-868.
Liu T T, Deng L, Lu J K , et al. Synthesis of wax ester in an immobilized packed-bed reactor. Chemical Industry and Engineering Progress, 2009,28(5):864-868.
[37] Laudani C G, Habulin M, Knez Ž , et al. Immobilized lipase-mediated long-chain fatty acid esterification in dense carbon dioxide: Bench-scale packed-bed reactor study. Journal of Supercritical Fluids, 2007,41(1):74-81.
doi: 10.1016/j.supflu.2006.08.017
[1] 杨运松,梁金花,杨晓瑞,马艺鸣,金爽,孙姚瑶,朱建良. 柴油生物酶催化氧化脱硫的研究进展[J]. 中国生物工程杂志, 2021, 41(10): 109-115.
[2] 朱衡,林海蛟,张继福,张云,孙爱君,胡云峰. 氨基载体共价结合固定化海洋假丝酵母脂肪酶 *[J]. 中国生物工程杂志, 2019, 39(7): 71-78.
[3] 巩凤芹,刘启顺,谭海东,金花,谭成玉,尹恒. MOFs固定5-羟甲基糠醛氧化酶及其催化活性的研究 *[J]. 中国生物工程杂志, 2019, 39(6): 41-47.
[4] 徐珊,李任强,张继福,张云,孙爱君,胡云峰. 乙二醇缩水甘油醚交联海藻酸钠-羧甲基纤维素钠固定化脂肪酶 *[J]. 中国生物工程杂志, 2017, 37(12): 77-83.
[5] 司洪宇, 王丙莲, 梁晓辉, 张晓东. 酶电极法快速测定甘油含量的研究[J]. 中国生物工程杂志, 2016, 36(12): 79-85.
[6] 李丽娟, 马贵平, 赵林果. 固定化酶载体研究进展[J]. 中国生物工程杂志, 2015, 35(11): 105-113.
[7] 黄哲,张涛,林章凛. 纳米SiO2固定化β-葡萄糖苷酶及其在双相体系中水解大豆异黄酮的工艺研究[J]. 中国生物工程杂志, 2008, 28(6): 71-76.
[8] 金科铭,曹学君,庄英萍,储炬,张嗣良. 固定化青霉素酰化酶在光-pH敏感可回用两水相中裂解青霉素G为6-APA[J]. 中国生物工程杂志, 2007, 27(10): 53-58.
[9] 孔珊珊,马明浩,汪洋,陈怡倩,潘延芳,吴自荣. 交联酶聚集体及其研究进展[J]. 中国生物工程杂志, 2006, 26(0): 0-0.
[10] 曹黎明, 陈欢林. 酶的定向固定化方法及其对酶生物活性的影响[J]. 中国生物工程杂志, 2003, 23(1): 22-29.
[11] . 海洋生物技术和水产养殖技术[J]. 中国生物工程杂志, 1998, 18(S1): 39-49.
[12] 庄蕾, 陈冠军, 高培基. SIS聚合物在生物技术中的应用[J]. 中国生物工程杂志, 1998, 18(6): 58-62.
[13] 李越中, 陈琦. 海洋微生物资源多样性[J]. 中国生物工程杂志, 1998, 18(4): 34-40,33.
[14] 罗明典. 生物技术用于开发健脑食品[J]. 中国生物工程杂志, 1995, 15(2): 29-29.
[15] 陈来成. 国外海洋生物技术发展概况[J]. 中国生物工程杂志, 1994, 14(6): 11-20.