Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2016, Vol. 36 Issue (11): 30-38    DOI: 10.13523/j.cb.20161105
研究报告     
Geobacillus sp.CHB1环糊精葡萄糖基转移酶淀粉结合位点N623饱和突变对催化效率与产物特异性的影响
郭永华1,2, 陈济琛1, 蔡海松1, 陈龙军1, 林新坚1,2
1 福建省农业科学院土壤肥料研究所 福州 350003;
2 福建农林大学生命科学学院 福州 350002
Saturated Mutation Effects on Catalytic Efficiency and Product Specificity of Starch Binding Site N623 of Cyclodextrin Glucanotransferase from Geobacillus sp. CHB1
GUO Yong hua1,2, CHEN Ji chen1, CAI Hai song1, CHEN Long jun1, LIN Xin jian1,2
1. Soil and Fertilizer Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China;
2. College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
 全文: PDF(908 KB)   HTML
摘要:

为了提高来源于Geobacillus sp.CHB1环糊精葡萄糖基转移酶(CGTase)的催化效率和产物特异性,对其氨基酸序列和模拟结构进行了分析,确定其淀粉结合位点2处第623位氨基酸残基的构象可能影响其催化效率。运用重叠PCR技术,在其淀粉结合位点2处第623位(N623)进行定点饱和突变,构建19种不同氨基酸残基突变体。将突变基因与pET-28a(+)-ompA载体连接并在大肠杆菌BL21(DE3)中表达。以可溶性淀粉为底物进行酶催化实验,HPLC分析反应产物中的环糊精含量变化。结果表明,相对于野生型CGTase,突变酶N623T的催化效率明显提高,总环化活力提高了58.6%,α-环化活力提高了64%,β-环化活力提高了80.5%,而γ-环化活力降低了35.3%。产物特异性方面,相比野生型CGTase,突变酶N623T的淀粉总转化率从11.3%提高至39.7%,提高了251.3%,其中α-环糊精、γ-环糊精所占比例缩减为32.8%和7.7%,β-环糊精提高至59.5%。分析其可能机制为:与野生型CGTase相比,突变体N623T中苏氨酸残基代替了天冬酰胺,造成淀粉结合位点2处的构象发生了变化,该构象优化底物作用方向有利于反应的进行,从而提高了酶的催化效率。

关键词: 环糊精葡萄糖基转移酶催化效率产物特异性饱和突变    
Abstract:

In order to improve catalytic efficiency and product specificity of cyclodextrin glucanotransferase (CGTase) from Geobacillus sp. CHB1, acid sequences and simulation structure model were analyzed, found out that the 623th amino acid residues of starch binding sites II probably affected its catalytic efficiency. Using overlapping PCR method, 19 kinds of mtuants on the 623th amino acid residues (N623) of starch binding sites II of CGTase were built. The mutant CGTase genes were respectively linked with pET-28a(+)-ompA and expressed in Escherichia coli BL21(DE3). The recombinant pure enzyme was used to transform soluble starch into cyclodextrins (CDs). HPLC analysis results show that, compared to wild-type CGTase, mutant N623T increases catalytic efficiency of CGTase, the total cyclization activity increased 58.6%, α-cyclization activity increased 64%, β-cyclization activity increased 80.5%, while γ-cyclization activity was reduced by 35.3%. In terms of product specificity, compared to wild-type CGTase, the total starch conversion rate by mutant N623T increased from 11.3% to 39.7%, of which α-cyclodextrin, γ-cyclodextrin proportion reduced to 32.8% and 7.7%, β-cyclodextrin increased to 59.5%. The possible mechanism was that, compared to wild-type CGTase, mutant N623T. Threonine residue in place of asparagine caused conformation of starch binding site II was changed, the conformation optimized substrate acting direction, in favor of the reaction is carried out, thereby improving the catalytic efficiency of the enzyme.

Key words: Product specificity    Saturated mutation    Cyclodextrin glucanotransferase    Catalytic efficiency
收稿日期: 2016-04-28 出版日期: 2016-11-25
ZTFLH:  Q812  
基金资助:

国家公益性农业科研专项(201303094-05),福建省自然科学基金项目(2014J01105),福建省属公益类科研院所基本科研专项(2014R1022-3),福建财政社会公益研究(2060302)资助项目

通讯作者: 林新坚,xinjianlin@163.net     E-mail: xinjianlin@163.net
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

郭永华, 陈济琛, 蔡海松, 陈龙军, 林新坚. Geobacillus sp.CHB1环糊精葡萄糖基转移酶淀粉结合位点N623饱和突变对催化效率与产物特异性的影响[J]. 中国生物工程杂志, 2016, 36(11): 30-38.

GUO Yong hua, CHEN Ji chen, CAI Hai song, CHEN Long jun, LIN Xin jian. Saturated Mutation Effects on Catalytic Efficiency and Product Specificity of Starch Binding Site N623 of Cyclodextrin Glucanotransferase from Geobacillus sp. CHB1. China Biotechnology, 2016, 36(11): 30-38.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20161105        https://manu60.magtech.com.cn/biotech/CN/Y2016/V36/I11/30

[1] Loftsson T, Duchene D. Cyclodextrins and their pharmaceutical applications. International Journal of Pharmaceutics, 2007, 329(1-2):1-11.
[2] Uitdehaag J C M, Veen B A V D, Dijkhuizen L, et al. Catalytic mechanism and product specificity of cyclodextrin glycosyltransferase, a prototypical transglycosylase from the α-amylase family. Enzyme & Microbial Technology, 2002, 30(01):295-304.
[3] Leemhuis H, Kelly R M, Dijkhuizen L. Engineering of cyclodextrin glucanotransferases and the impact for biotechnological applications. Applied Microbiology & Biotechnology, 2009, 85(4):823-835.
[4] Christiansen C, Hachem M A,Jane[AK?]k K Š, et al. The carbohydrate-binding module family 20-diversity, structure, and function. Febs Journal, 2009, 276(18):5006-5029.
[5] Dalmia B K, Schütte K, Nikolov Z L. Domain E of Bacillus macerans cyclodextrin glucanotransferase:An independent starch-binding domain. Biotechnology & Bioengineering, 1995, 47(47):575-584.
[6] Lawson C L, Montfort R, Van, B Strokopytov, et al. Nucleotide Sequence and X-ray structure of cyclodextrin glycosyltransferase from Bacillus circulans Strain 251 in a maltose-dependent crystal Form. Journal of Molecular Biology, 1994, 236(2):590-600.
[7] Sanoja-Romina R, Oviedo N, Sánchez S. Microbial starch-binding domain. Current Opinion in Microbiology, 2005, 8(3):260-267.
[8] Kimura K, Kataoka S, Nakamura A, et al. Functions of the COOH-terminal region of cyclodextrin glucanotransferase of alkalophilic ja:math sp.#1011:relation to catalyzing activity and pH stability. Biochemical & Biophysical Research Communications, 1989, 161(3):1273-1279.
[9] Chang H Y, Irwin P M, Nikolov Z L. Effects of mutations in the starch-binding domain of Bacillus macerans cyclodextrin glycosyltransferase. Journal of Biotechnology, 1998, 65(2-3):191-202.
[10] Veen B A V D, Uitdehaag J C M, Dijkstra B W, et al. Engineering of cyclodextrin glycosyltransferase reaction and product specificity. Biochimica Et Biophysica Acta, 2000, 1543(2):336-360.
[11] Studier F. Protein production by auto-induction in high-density shaking cultures. Protein Expression & Purification, 2005, 41(1):207-234.
[12] Lejeune A, Sakaguchi K, Imanaka T. A spectrophotometric assay for the cyclization activity of cyclomaltohexaose (α-cyclodextrin) glucanotransferase. Analytical Biochemistry, 1989, 181(1):6-11.
[13] Mäkelä M, Korpela T, Laakso S. Colorimetric determination of β-cyclodextrin:two assay modifications based on molecular complexation of phenolphatalein. Journal of Biochemical & Biophysical Methods, 1987, 14(2):85-92.
[14] Kato T,Horikoshi K. Colorimetric determination of.gamma.-cyclodextrin. Analytical Chemistry, 2002, 56(9):1738-1740.
[15] Bradford M M. A rapid method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976, 72(s1-2):248-254.
[16] Arnold K, Bordoli L, Kopp J T. The SWISS-MODEL workspace:a web-based environment for protein structure homology modelling. Bioinformatics, 2006, 22(2):195-201(7).
[17] Kopp J, Schwede T. The SWISS-MODEL repository of annotated three-dimensional protein structure homology models. Nucleic Acids Research, 2004, 32(22):230-234.
[18] Zhang Y. I-TASSER server for protein 3D structure prediction. Bmc Bioinformatics, 2008, 9(3):297-315.
[19] 杨冬, 田靖斐, 陈晟, 等. 亚位点-7处突变对碱性芽胞杆菌CGT酶产物特异性的影响. 生物工程学报, 2012, 28(2):191-202. Yang D, Tian J F, Chen S, et al. Effect of mutating subsite-7 on product specificity of cyclodextrin glucanotransferase from alkalophilic Bacillus clarkia. Chinese Journal of Biotechnology, 2012, 28(2):191-202.
[20] Giardina T, Gunning A P, Juge N, et al. Both binding sites of the starch-binding domain of Aspergillus niger glucoamylase are essential for inducing a conformational change in amylose. Journal of Molecular Biology, 2001, 313(5):1149-1159.
[21] Penninga D, Veen B A, Van Der, Knegtel R M, et al. The raw starch binding domain of cyclodextrin glycosyltransferase from Bacillus circulans strain 251. Journal of Biological Chemistry, 1996, 271(51):32777-32784.

[1] 王越,李江华,堵国成,刘龙. L-氨基酸脱氨酶的分子改造及其用于全细胞催化法生产α-酮戊二酸条件的优化 *[J]. 中国生物工程杂志, 2019, 39(3): 56-64.
[2] 陈方,徐刚,杨立荣,吴坚平. 定点突变提高醇脱氢酶LkTADH催化制备他汀关键手性砌块的酶活 *[J]. 中国生物工程杂志, 2018, 38(9): 59-64.
[3] 夏亚穆, 李晨晨. 环糊精葡萄糖基转移酶的基因改造与高效表达[J]. 中国生物工程杂志, 2015, 35(2): 105-110.
[4] 纪丽萍, 吴丹, 吴敬, 陈坚. 重组大肠杆菌产γ-环糊精葡萄糖基转移酶的摇瓶发酵优化[J]. 中国生物工程杂志, 2011, 31(10): 50-56.
[5] 程婧 吴丹 陈晟 吴敬 陈坚. 复合与合成培养基对大肠杆菌胞外生产α-环糊精葡萄糖基转移酶的影响[J]. 中国生物工程杂志, 2010, 30(09): 36-42.
[6] 李兆丰 顾正彪 堵国成 吴敬 陈坚. 环糊精葡萄糖基转移酶的结构特征与催化机理[J]. 中国生物工程杂志, 2010, 30(06): 144-150.
[7] 丁闰蓉,吴敬. 表面活性剂对大肠杆菌胞外生产α-环糊精葡萄糖基转移酶的影响[J]. 中国生物工程杂志, 2009, 29(07): 56-61.
[8] 杨红艺,钞亚鹏,石家骥,解复红,薛智权,钱世钧. α-环状糊精葡萄糖基转移酶的固定化及其性质研究[J]. 中国生物工程杂志, 2009, 29(01): 34-38.
[9] 王俊英,钞亚鹏,关东明,钱世钧. 一种α-环糊精葡萄糖基转移酶的纯化及性质研究[J]. 中国生物工程杂志, 2008, 28(7): 67-70.