Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (11): 54-61    DOI: 10.13523/j.cb.20191106
研究报告     
AUF1在胞质DNA抑制细胞葡萄糖代谢中的作用研究
谢琳娜1(),卜静静2,郑敏2
1 福建生物工程职业技术学院 福州 350003 2 福建医科大学 福州 350108
2 福建医科大学 福州 350108
The Role of AUF1 in Cytosolic DNA Induced Cellular Glucose Metabolic Response
XIE Lin-na1(),BU Jing-jing2,ZHENG Min2
1 Fujian Vocational College of Bioengineering, Fuzhou 350003,China
2 Fujian Medical University, Fuzhou 350108,China
 全文: PDF(800 KB)   HTML
摘要:

目的 探讨AUF1在胞质DNA引起的细胞葡萄糖代谢应答中的作用及其机制。方法 (1)用核质分离技术分离细胞核与细胞质,并通过生物素-亲和素亲和层析技术分离细胞质中与胞质DNA(ISD)结合的蛋白质,然后通过“银染-质谱”和“复合物-质谱”技术鉴定出差异蛋白——AUF1。再利用体外结合实验验证AUF1与胞质DNA的相互作用。(2)在胞质DNA刺激后,通过ATP检测试剂盒和CCK8细胞氧还活力检测试剂,比较野生型细胞和基于CRISPR/Cas9技术的AUF1基因敲除细胞中葡萄糖代谢应答情况。(3)通过半定量PCR技术,在野生型、基因敲除AUF1、基因敲除后回补AUF1或空载体的四类细胞中检测葡萄糖转运蛋白GLUTs以及葡萄糖代谢相关酶的mRNA表达情况,筛选出与细胞糖代谢相关的AUF1下游效应分子——GLUT3。进而用实时荧光定量PCR进行验证。(4)通过半定量和荧光定量PCR分析胞质DNA刺激下GLUT3的mRNA变化情况,分析胞质DNA的刺激是否影响GLUT3的mRNA表达。结果 (1)两次质谱分析均发现AUF1能与ISD结合。体外结合实验也证实,不论是原核表达的GST-AUF1还是真核细胞表达的GFP-AUF1均能与单链和双链的ISD相结合。(2)基因敲除AUF1后的HEK293细胞在用胞质DNA刺激后,胞内的ATP水平和对CCK8的还原能力都明显高于野生型细胞。提示AUF1基因敲除细胞内的葡萄糖代谢不受胞质DNA刺激所抑制,说明AUF1很可能参与了胞质DNA对细胞糖代谢的调节。(3)半定量PCR技术检测发现在AUF1敲除的细胞中GLUT3的mRNA明显减少,而其他的GLUT家族成员和代谢酶则没有显著差异。实时荧光定量PCR证实上述现象,提示AUF1很可能通过稳定GLUT3的mRNA参与葡萄糖代谢的调节。(4)无论是单链还是双链ISD刺激后的细胞中,GLUT3的mRNA均减少,说明GLUT3可能是胞质DNA对糖代谢的调节过程中的一个下游效应分子。结论 AUF1能与胞质DNA结合,很可能通过调节下游GLUT3的mRNA稳定性参与胞质DNA引起的糖代谢应答反应。

关键词: AUF1胞质DNA葡萄糖代谢GLUT3    
Abstract:

Objective: The molecular mechanism of cytosolic DNA induced cellular glucose metabolic response was aimed to unravel.Methods: (1) The nucleus and cytoplasm were separated by fractionation, and the protein bound to cytosolic DNA (ISD) was isolated using biotin-avidin affinity chromatography. The differentially expressed protein, AUF1 was identified by silver staining followed by mass spectrometry analysis or directly by complex-mass spectrometry analysis. The interaction between AUF1 and ISD was verified by pull-down assay. (2) ATP assay and CCK8 analysis were performed to evaluate the cytosolic DNA induced cellular glucose metabolic response in wildtype and AUF1 knockout cells, which was generated by CRISPR/Cas9 technology. (3) The mRNA expression of glucose transporters GLUTs and key enzymes in the process of glucose metabolism were detected by semi-quantitative PCR in four types of cells: wild type HEK293 cells, AUF1 knockout HEK293 cells, and AUF1 knockout cells reconstituted with AUF1 or empty vector as controls. GLUT3 was identified as one of the downstream effectors of AUF1. Real-time PCR was also performed to verify the results. (4) GLUT3 mRNA under the stimulation of cytosolic DNA was analyzed by semi-quantitative and real-time PCR.Results: (1) Both mass-spectrometry analyses showed that AUF1 could bind to ISD. In vitro binding assays also confirmed that both GST-AUF1 expressed in prokaryotic cells and GFP-AUF1 expressed in eukaryotic cells could bind to single-stranded and double-stranded ISDs. (2) Upon cytosolic DNA stimulation, intracellular ATP levels and reductive capabilities of AUF1-/- HEK293 cells were higher than wild-type cells. It suggested that the glucose metabolism in AUF1 knockout cells is not inhibited by cytosolic DNA stimulation, and AUF1 may be involved in cytosolic DNA induced cellular glucose metabolic response. (3) Semi-quantitative PCR analysis showed that GLUT3 mRNA expression was significantly reduced in AUF1 knockout cells, while there were no significant differences among other GLUT family members and metabolic enzymes. Real-time PCR also confirmed the above phenomena, suggesting that AUF1 may regulate glucose metabolism by stabilizing GLUT3 mRNA. (4) Both single-stranded and double-stranded ISD stimulation lead to a decrease in GLUT3 mRNA expression, suggested that GLUT3 might be a downstream effector in the regulation of glucose metabolism upon cytosolic DNA stimulation.Conclusions: AUF1 can bind to cytosolic DNA, and participate in the cytosolic DNA induced Glucose metabolic response, potentially through regulating the stability of GLUT3 mRNA.

Key words: AUF1    Cytosolic DNA    Glucose metabolic response    GLUT3
收稿日期: 2019-04-28 出版日期: 2019-12-17
ZTFLH:  R34  
通讯作者: 谢琳娜     E-mail: bunnylinda@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
谢琳娜
卜静静
郑敏

引用本文:

谢琳娜,卜静静,郑敏. AUF1在胞质DNA抑制细胞葡萄糖代谢中的作用研究[J]. 中国生物工程杂志, 2019, 39(11): 54-61.

XIE Lin-na,BU Jing-jing,ZHENG Min. The Role of AUF1 in Cytosolic DNA Induced Cellular Glucose Metabolic Response. China Biotechnology, 2019, 39(11): 54-61.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20191106        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I11/54

图1  质谱技术和体外结合实验证实AUF1结合单链和双链ISD
图2  基于CRISPR/Cas9技术基因敲除AUF1并证实AUF1参与胞质DNA诱导的细胞能量应答
图3  证实GLUT3受到AUF1的调控
图4  胞质DNA刺激下调GLUT3的mRNA表达
[1] Wiersinga W J, Leopold S J, Cranendonk D R , et al. Host innate immune responses to sepsis. Virulence, 2014,5(1):36-44.
doi: 10.4161/viru.25436
[2] Gonzalez-Navajas J M, Lee J, David M , et al. Immunomodulatory functions of type I interferons. Nat Rev Immunol, 2012,12(6):125-135.
doi: 10.1128/JVI.01541-18 pmid: 30404799
[3] Stetson D B, Medzhitov R . Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. Immunity, 2006,24(1):93-103.
doi: 10.1016/j.immuni.2005.12.003 pmid: 16413926
[4] Sun L, Wu J, Du F , et al. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science, 2013,339(6121):786-791.
doi: 10.1126/science.1232458
[5] Wu J, Sun L, Chen X , et al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science, 2013,339(6121):826-830.
doi: 10.1126/science.1229963
[6] Ablasser A, Goldeck M, Cavlar T , et al. cGAS produces a 2'-5'-linked cyclic dinucleotide second messenger that activates STING. Nature, 2013,498(7454):380-384.
doi: 10.1038/nature12306 pmid: 23722158
[7] Zheng M, Xie L N, Liang Y J , et al. Recognition of cytosolic DNA attenuates glucose metabolism and induces AMPK mediated energy stress response. International Journal of Biological Sciences, 2015,11(5):587-594.
doi: 10.7150/ijbs.10945 pmid: 25892965
[8] Deng D, Sun P, Yan C , et al. Molecular basis of ligand recognition and transport by glucose transporters. Nature, 2015,526(7573):391-396.
doi: 10.1038/nature14655 pmid: 26176916
[9] Zhang W, Wagner B J, Ehrenman K , et al. Purification, characterization, and cDNA cloning of an AU-rich element RNA-binding protein, AUF1. Molecular and Cellular Biology, 1993,13(12):7652-7665.
doi: 10.1128/mcb.13.12.7652 pmid: 8246982
[10] Moore A E, Chenette D M, Larkin L C , et al. Physiological networks and disease functions of RNA-binding protein AUF1. Wiley Interdisciplinary Reviews RNA, 2014,5(4):549-564.
doi: 10.1002/wrna.1230 pmid: 24687816
[11] Gao X, Dong H, Lin C , et al. Reduction of AUF1-mediated follistatin mRNA decay during glucose starvation protects cells from apoptosis. Nucleic Acids Research, 2014,42(16):10720-10730.
doi: 10.1093/nar/gku778 pmid: 25159612
[12] Enokizono Y, Konishi Y, Nagata K , et al. Structure of hnRNP D complexed with single-stranded telomere DNA and unfolding of the quadruplex by heterogeneous nuclear ribonucleoprotein D. The Journal of Biological Chemistry, 2005,280(19):18862-18870.
doi: 10.1074/jbc.M411822200 pmid: 15734733
[13] Pont A R, Sadri N, Hsiao S J , et al. mRNA decay factor AUF1 maintains normal aging, telomere maintenance, and suppression of senescence by activation of telomerase transcription. Molecular Cell, 2012,47(1):5-15.
doi: 10.1016/j.molcel.2012.04.019
[14] Chen L Y, Lingner J . AUF1/HnRNP D RNA binding protein functions in telomere maintenance. Molecular Cell, 2012,47(1):1-2.
doi: 10.1016/j.molcel.2012.06.031 pmid: 22793690
[15] Ran F A, Hsu P D, Wright J , et al. Genome engineering using the CRISPR-Cas9 system. Nature Protocol, 2013,8(11):2281-2308.
doi: 10.1038/nprot.2013.143 pmid: 24157548
[16] Yannai H, Ban T, Wang Z , et al. HMGB proteins function as universal sentinels for nucleic-acid-mediated innate immune responses. Nature, 2009,462(7269):99-103.
doi: 10.1038/nature08512 pmid: 19890330
[17] Wang W, Xiao Z D, Li X , et al. AMPK modulates Hippo pathway activity to regulate energy homeostasis. Nature Cell Biology, 2015,17(4):490-499.
doi: 10.1038/ncb3113 pmid: 25751139
[18] Levy P, Bartosch B . Metabolic reprogramming: a hallmark of viral oncogenesis. Oncogene, 2016,35(32):4155-4164.
doi: 10.1038/onc.2015.479 pmid: 26686092
[19] Thai M, Graham N A, Braas D , et al. Adenovirus E4ORF1-induced MYC activation promotes host cell anabolic glucose metabolism and virus replication. Cell Metabolism, 2014,19(4):694-701.
doi: 10.1016/j.cmet.2014.03.009
[20] Singaravelu R ,O’Hara S,Jones D M, et al.MicroRNAs regulate the immunometabolic response to viral infection in the liver. Nature Chemical Biology, 2015,11(12):988-993.
doi: 10.1038/nchembio.1940 pmid: 26479438
[21] Ikeda M, Kato N . Modulation of host metabolism as a target of new antivirals. Advanced Drug Delivery Reviews, 2007,59(12):1277-1289.
doi: 10.1016/j.addr.2007.03.021 pmid: 17897752
[22] Abe T, Harashima A, Xia T , et al. STING recognition of cytoplasmic DNA instigates cellular defense. Molecular Cell, 2013,50(1):5-15.
doi: 10.1016/j.molcel.2013.01.039
[23] Yan N , Regalado-Magdos A D,Stiggelbout B, et al. The cytosolic exonuclease TREX1 inhibits the innate immune response to human immunodeficiency virus type 1. Nature Immunology, 2010,11(11):1005-1013.
doi: 10.1038/ni.1941 pmid: 20871604
[24] Cong L, Ran F A, Cox D , et al. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013,339(6121):819-823.
doi: 10.1126/science.1229223
[1] 满善晴, 孔祥祯, 董小明, 陈慧, 詹轶群, 李长燕, 杨晓明. HPD基因启动子报告基因载体构建与转录活性分析[J]. 中国生物工程杂志, 0, (): 30-41.
[2] 蔡翠霞, 肖维威, 康文杰, 马文丽. 转基因食品DNA提取研究进展[J]. 中国生物工程杂志, 2011, 31(5): 121-125.