Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (10): 67-74    DOI: 10.13523/j.cb.20191008
技术与方法     
CRISPR - Cas9系统介导的工业酵母营养缺陷型菌株构建 *
陆海燕,李佳蔓,孙思凡,章小毛,丁娟娟,邹少兰()
天津大学化工学院 系统生物工程教育部重点实验室 天津 300072
Construction of an Auxotrophic Mutant from an Industrial Saccharomyces cerevisiae Strain by CRISPR-Cas9 System
LU Hai-yan,LI Jia-man,SUN Si-fan,ZHANG Xiao-mao,DING Juan-juan,ZOU Shao-lan()
Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
 全文: PDF(712 KB)   HTML
摘要:

以组氨酸营养缺陷型菌株构建为例,在前期分离、诱变和筛选得到的安琪酵母工业菌株衍生菌株K-a中试用CRISPR-Cas9系统进行基因修饰。针对菌株K-a为单倍体、ura3和对潮霉素B敏感的特点,构建了以URA3为选择标记的Cas9表达载体YCplac33-Cas9、以hphNT1为选择标记的gRNA表达载体pRS42H-gHIS1,使用PCR方法合成donor DNA片段。使用醋酸锂法制备感受态细胞K-a (YCplac33-Cas9)、将pRS42H-gHIS1和donor DNA共转化,涂布(CMG -URA+300μg/ml潮霉素B)平板,经表型筛选和PCR产物测序证明筛选平板生长菌落为目的转化子K-a (his1)的比例为74.4 %,初步建立了适于利用CRISPR/Cas 9系统进行基因修饰的工业菌株宿主平台和相应的简便、快速进行基因修饰的操作技术流程。

关键词: 酿酒酵母CRISPR-Cas9his1基因敲除    
Abstract:

CRISPR-Cas9 system was first attempted to use in Angel industrial yeast - derived strain K-a, and HIS1 gene knockout was carried out. Because strain K-a is haploid, ura3 and sensitive to hygromycin B, the three key factors were designed as followings:Cas9 expressing vector YCplac33-Cas9 with URA3 marker, gRNA expressing vector pRS42H-gHIS1 with hph NT1 marker, and donor DNA fragment by PCR. By using lithium acetate method, pRS42H-gHIS1 and donor DNA was co-transformed into K-a (YCplac33-Cas9) competent cells and (CMG -URA+300μg/ml hygromycin B) plate was used for screening. The target transformants were proved to obtain and the ratio was 74.4% by phenotype screening and PCR product sequencing. So the industrial host platform utilizing CRISPR-Cas9 system was constructed and the simple and rapid gene manipulation protocol was preliminarily formed.

Key words: Saccharomyces cerevisiae    CRISPR-Cas9    his1    Gene knockout
收稿日期: 2019-03-16 出版日期: 2019-11-12
ZTFLH:  Q812  
基金资助: * 天津市科技计划项目(18YFZCNC01240);国家自然科学基金(31470208)
通讯作者: 邹少兰     E-mail: slzhou@tju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陆海燕
李佳蔓
孙思凡
章小毛
丁娟娟
邹少兰

引用本文:

陆海燕,李佳蔓,孙思凡,章小毛,丁娟娟,邹少兰. CRISPR - Cas9系统介导的工业酵母营养缺陷型菌株构建 *[J]. 中国生物工程杂志, 2019, 39(10): 67-74.

LU Hai-yan,LI Jia-man,SUN Si-fan,ZHANG Xiao-mao,DING Juan-juan,ZOU Shao-lan. Construction of an Auxotrophic Mutant from an Industrial Saccharomyces cerevisiae Strain by CRISPR-Cas9 System. China Biotechnology, 2019, 39(10): 67-74.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20191008        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I10/67

Primers Sequences (5'→3') Purpose
P1 TTTGCGGCCGGTACCCACTGGCCGTCGTTTTACAA 扩增YCplac33载体片段
P2 CTATGAGCTCCATGGCATGCAAGCTTGGCGTAA
P3 CCATGGAGCTCATAGCTTCAAAA 扩增Cas9基因片段
P4 GGTACCGGCCGCAAATTAAA
P5 AAATACTTTGCCGATTTGGAGTTTTAGAGCTAGAAATAGC 扩增gRNA序列 (20bp)
P6 TCCAAATCGGCAAAGTATTTGATCATTTATCTTTCACTGC
P7 CTTTGGTCTCACCAAAACACCATTGTTACCAGTTTCGT 扩增donor DNA中左同源臂
P8 TCAACAGTAGAAATCGGCAAAGTATTTTTC
P9 TTGCCGATTTCTACTGTTGAAAAAATGACC 扩增 donor DNA中右同源臂
P10 GAAAGGTCTCTCTCTAAAACTCCAAATCGGCAAAGTATTTCACGGAACCACTGACAAA
P11 TGACCAAGTTCGTAAATCTA 鉴定引物对
P12 CCATCTCCACAATAGGCATA
表1  实验所用引物
Plasmids Characteristics Sources
YCplac33 Ampr, URA3, low copy number in S.cerevisiae ATCC 87586
pRS415-Cas9 Ampr, LEU2, Cas9,10 698bp Our lab
pRS42H-gRNA Ampr,hphNT1, crRNA Our lab
YCplac33-Cas9 Ampr, URA3, Cas9, 5 603bp This study
pRS42H-gHIS1 Ampr,hphNT1, crRNA, 20bp guide for his1 gene This study
表2  实验所用质粒
图1  质粒YCplac33-Cas9和pRS42H-gHIS1
图2  质粒YCplac33-Cas 9构建用片段琼脂糖凝胶电泳图
图3  转化子质粒提取物酶切鉴定琼脂糖凝胶电泳图
潮霉素B终浓度(μg/ml) 1# 2# 3# 平均值
150 523 492 516 510
200 27 44 34 35
250 8 9 7 8
300 0 0 0 0
350 0 0 0 0
表3  宿主菌株K-a潮霉素B抗性水平测试
图4  PCR产物琼脂糖凝胶电泳图
  
转化管编号
1 2 3 4
Guide plasmid加量(μg) 2.0 2.0
Donor DNA加量(μg) 2 2
生长菌落数(个) 78 18 3 1
阳性转化子数(个) 58 0 0 0
  
图5  PCR产物琼脂糖凝胶电泳图
图6  YPD和CMG培养基中的生长曲线
[1] Runguphan W, Keasling J D . Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid- derived biofuels and chemicals. Metabolic Engineering, 2014,21(1):103-113.
[2] Edward J L. Historical evolution of laboratory strains of Saccharomyces cerevisiae//Andrews B, Boone C, Davis T N,et al. Budding yeast: a laboratory manual. New York:Cold Spring Harbor Laboratory Press, 2016: 1-6.
[3] Wnuk M, Panek A, Golec E , et al. Genetic profiling of yeast industrial strains using in situ comparative genomic hybridization (CGH). Journal of Biotechnology, 2015,210:52-56.
[4] Querol A, Bond U . The complex and dynamic genomes of industrial yeasts. Fems Microbiol Lett, 2009,293(1):1-10.
[5] Donohoue P D, Barrangou R, May A P . Advances in industrial biotechnology using CRISPR-Cas systems. Trends Biotechnol, 2018,36(2):134-146.
[6] Gilbert L A, Larson M H, Morsut L , et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell, 2013,154(2):442-451.
[7] Cong L, Ran F A, Cox D , et al. Multiplex genome engineering using CRISPR/Cas systems, Science, 2013,339(6121):819-823.
doi: 10.1126/science.1229223
[8] 熊彬彬, 曾虎, 刘云坤 , 等. CRISPR-Cas9驱动的基因编辑新纪元. 微生物学通报, 2017,44(1):178-185.
Xiong B B, Zeng H , Liu Y k,et al. A new era of genetic editing driven by CRISPR-Cas9. Microbiology China, 2017,44(1):178-185.
[9] 程妙文, 罗玮, 杜瑶 . CRISPR-CAS系统介导的新一代基因靶向修饰技术及其在工业微生物中的应用. 微生物学报, 2017,57(11):1621-1633.
Chen M W, Luo W, Du Y . A new generation of gene targeted modification technology mediated by CRISPR-Cas system and its application in industrial microorganisms. Microbiology China, 2017,57(11):1621-1633.
[10] 张昆, 陈景超, 李祎 , 等. CRISPR/Cas9技术在微生物研究中的应用进展. 微生物学通报, 2018,45(2):451-464.
Zhang K, Chen J C, Li W , et al. Progress in the application of CRISPR/Cas9 technology in microbial research. Microbiology China, 2018,45(2):451-464.
[11] 田开仁, 薛二淑, 宋倩倩 , 等. CRISPR-dCas9调控基因转录的研究进展. 中国生物工程杂志, 2018,38(7):94-101.
Tian K R, Xue E S, Song Q Q , et al. Progress in the regulation of gene transcription by CRISPR- dCas9. China Biotechnology, 2018,38(7):94-101.
[12] 潘海峰, 杨晗, 于思远 , 等. 基于体外组装核糖核蛋白形式的CRISPR/Cas9基因编辑方法研究进展. 中国生物工程杂志, 2019,39(1):71-76.
Pan H F, Yang H, Yu S Y , et al. Progress in editing methods of CRISPR/Cas9 gene based on in vitro assembly of ribonucleoprotein. China Biotechnology, 2019,39(1):71-76.
[13] Carlo J E, Norville J E, Mali P , et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Research, 2013,41(7):4336-4343.
doi: 10.1093/nar/gkt135
[14] Zhang G C, Kong I I, Kim H , et al. Construction of a quadruple auxotrophic mutant of an industrial polyploid Saccharomyces cerevisiae strain by using RNA-guided Cas9 nuclease. Applied And Environmental Microbiology, 2014,80(24):7694-7701.
doi: 10.1128/AEM.02310-14
[15] Bao Z, Xiao H, Liang J , et al. Homology-integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae. Acs Synth Biol, 2015,4(5):585-594.
[16] 吴玉珍, 徐海津, 白艳玲 , 等. CRISPR-Cas9系统与maz F介导的大片段删减法在酿酒酵母染色体大片段删减中的比较. 微生物学报, 2017,57(11):1604-1611.
Wu Y Z, Xu H J, Bai Y L , et al. Comparison of CRISPR-Cas9 system and maz F-mediated large fragment deletion in large-scale fragmentation of Saccharomyces cerevisiae chromosome. Microbiology China, 2017,57(11):1604-1611.
[17] Jako?iūnas T, Jensen M K, Keasling J D . CRISPR/Cas9 advances engineering of microbial cell factories. Metabolic Engineering, 2016,34:44-59.
[18] Sander J D, Joung J K . CRISPR-Cas systems for editing, regulating and targeting genomes. Nature Biotechnology, 2014,32(4):347-355.
doi: 10.1038/nbt.2842
[19] David F, Siewers V . Advances in yeast genome engineering. FEMS Yeast Res, 2015,15(1):1-14.
[20] Hu Y, Jia Y, Zhao X , et al. A new strategy for seamless gene editing and marker recycling in Saccharomyces cerevisiae using lethal effect of Cwp1. Microbiology Open, 2018,8(6):e750.
[21] Gietz R D, Schiestl R H, Willems A R , et al. Studies on the transformation of intact yeast cells by the LiAc/SS‐ DNA/PEG procedure. Yeast, 1995,11(4):355-360.
[1] 王艳梅,寇航,马梅,申玉玉,赵宝顶,路福平,黎明. 利用CRISPR-Cas9技术失活黑曲霉中果胶酶基因及突变株性能评价*[J]. 中国生物工程杂志, 2021, 41(5): 35-44.
[2] 董曙馨,秦磊,李春,李珺. 利用转录因子工程重塑代谢网络实现细胞工厂高效生产[J]. 中国生物工程杂志, 2021, 41(4): 55-63.
[3] 薛志勇,代红生,张显元,孙艳颖,黄志伟. 表达透明颤菌血红蛋白基因对酿酒酵母生长及细胞内氧化状态的影响*[J]. 中国生物工程杂志, 2021, 41(11): 32-39.
[4] 石鹏程, 纪晓俊. 酵母系统表达人表皮生长因子研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 72-79.
[5] 彭海丽,侯占铭. MDT1基因参与禾谷镰刀菌分生孢子发生和营养生长 *[J]. 中国生物工程杂志, 2020, 40(8): 10-18.
[6] 郭洋,万颖寒,王珏,龚慧,周宇,慈磊,万志鹏,孙瑞林,费俭,沈如凌. Toll样受体4(TLR4)基因剔除小鼠构建及初步表型分析[J]. 中国生物工程杂志, 2020, 40(6): 1-9.
[7] 岑黔鸿,高彤,任怡,雷涵. 重组酿酒酵母表达幽门螺杆菌VacA蛋白及其免疫原性分析*[J]. 中国生物工程杂志, 2020, 40(5): 15-21.
[8] 郭晶,侯占铭. Folpcs1基因对尖孢镰刀菌亚麻专化型的无性繁殖和营养生长的调控 *[J]. 中国生物工程杂志, 2020, 40(3): 48-64.
[9] 郭胜楠, 李信晓, 王峰, 刘昆梅, 丁娜, 扈启宽, 孙涛. 海马与新皮质组织特异性GABRG2基因敲除小鼠模型的构建及其在遗传性癫痫伴热性惊厥附加症中的初步研究 *[J]. 中国生物工程杂志, 2020, 40(3): 9-20.
[10] 章小毛,郭敬涵,洪解放,陆海燕,丁娟娟,邹少兰,范寰. UPRE-lac Z为报告基因评价酵母UPR响应初步研究 *[J]. 中国生物工程杂志, 2020, 40(10): 1-9.
[11] 胡妍,李辉,何承文,朱婧,谢志平. 酵母亚细胞结构分离效率评估菌株的构建 *[J]. 中国生物工程杂志, 2020, 40(10): 10-23.
[12] 郭超婧,朱琼,张新,李磊,张令强. 去泛素化酶OTUB1肝脏特异性基因敲除小鼠模型的构建与表型分析 *[J]. 中国生物工程杂志, 2019, 39(5): 80-87.
[13] 万颖寒,慈磊,王珏,龚慧,李俊,董茹,孙瑞林,费俭,沈如凌. PD-L1基因敲除小鼠构建及初步表型验证[J]. 中国生物工程杂志, 2019, 39(12): 42-49.
[14] 吴果果,宋淑婷,岳荣,张晶,关莹,王玥,刘宝爱,吕学敏,魏建军,张会图. 反向筛选标记基因upp在杀真菌链霉菌遗传改造中的应用 *[J]. 中国生物工程杂志, 2019, 39(11): 78-86.
[15] 张正坦,朱婧,谢志平. 酿酒酵母全基因组SNARE蛋白的亚细胞定位研究 *[J]. 中国生物工程杂志, 2019, 39(10): 44-57.