Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (12): 120-128    DOI: 10.13523/j.cb.2206014
    
Synthetic Biology Risks and Biosafety Strategies in the View of Overall National Security Concept
ZHAO Chi-hong1,SU Dan-dan2,LI Chun3,WU Zong-zhen3,ZUO Kun-lan3,XU Yan-long4,LIU Huan3,5,**()
1 Chinese Center for Disease Control and Prevention, Beijing 102206, China
2 Wuhan University, Wuhan 430072, China
3 University of Science and Technology of China, Hefei 230026, China
4 University of Chinese Academy of Sciences, Beijing 100049, China
5 Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
Download: HTML   PDF(570KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Synthetic biology is an interdisciplinary subject with the characteristics of materials science, medicine and informatics. It has been endowed with a special and important position in the view of overall national security concept while promoting the medical progress and development of science and technology. How to deal with the challenges in the new era is an important proposition in terms of scientific and technological governance and biosafety for all of the countries in the world and internation society. This article mainly introduces the threat of biological weapons, bioterrorism threat, regulations of the International Convention on Biosafety and the ethical governance framework of biosafety related to synthetic biotechnology, summarizes the risks of biosafety related issues in the field of synthetic biotechnology in recent years, and puts forward suggestions for the strategies and the development of science and technology in the view of overall national security concept.



Key wordsOverall national security cocept      Biosafety      Synthetic biology     
Received: 13 June 2022      Published: 05 January 2023
ZTFLH:  Q81  
Corresponding Authors: Huan LIU     E-mail: liuhuan520@ustc.edu.cn
Cite this article:

ZHAO Chi-hong,SU Dan-dan,LI Chun,WU Zong-zhen,ZUO Kun-lan,XU Yan-long,LIU Huan. Synthetic Biology Risks and Biosafety Strategies in the View of Overall National Security Concept. China Biotechnology, 2022, 42(12): 120-128.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2206014     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I12/120

[1]   Hunter D. How to object to radically new technologies on the basis of justice: the case of synthetic biology. Bioethics, 2013, 27(8): 426-434.
doi: 10.1111/bioe.12049 pmid: 24010854
[2]   Schwille P. Bottom-up synthetic biology: engineering in a tinkerer’s world. Science, 2011, 333(6047): 1252-1254.
doi: 10.1126/science.1211701 pmid: 21885774
[3]   孙卓名, 毛欣娟, 梁桁. 英美国家生物安全战略比较分析. 辽宁警察学院学报, 2021, 23(4): 8-13.
[3]   Sun Z M, Mao X J, Liang H. Comparison of UK and USA national biosecurity and biodefense strategies. Journal of Liaoning Police College, 2021, 23(4): 8-13.
[4]   廖延雄. 炭疽邮件——发生于美国的恐怖主义事件. 畜牧与兽医, 2003, 35(7): 1-2.
[4]   Liao Y X. Anthrax mail: a terrorist event in the United States. Animal Husbandry & Veterinary Medicine, 2003, 35(7): 1-2.
[5]   王翠娥. 生物恐怖威胁特点及医学防御对策. 解放军医学杂志, 2005, 30(1): 15-18.
[5]   Wang C E. Characteristics and prophylactic strategy against bioterrorism. Medical Journal of Chinese PLA, 2005, 30(1): 15-18.
[6]   Noyce R S, Lederman S, Evans D H. Construction of an infectious horsepox virus vaccine from chemically synthesized DNA fragments. PLoS One, 2018, 13(1): e0188453.
doi: 10.1371/journal.pone.0188453
[7]   Koblentz G D. The de novo synthesis of horsepox virus: implications for biosecurity and recommendations for preventing the reemergence of smallpox. Health Security, 2017, 15(6): 620-628.
doi: 10.1089/hs.2017.0061 pmid: 28836863
[8]   Sanders B P, de Los Rios Oakes I, van Hoek V, et al. Cold-adapted viral attenuation (CAVA): highly temperature sensitive polioviruses as novel vaccine strains for a next generation inactivated poliovirus vaccine. PLoS Pathogens, 2016, 12(3): e1005483.
doi: 10.1371/journal.ppat.1005483
[9]   Qian Y J, Pu X F, Yu Y, et al. Poliovirus serotype 2 and coxsackievirus A promote the natural recombination of poliovirus. Journal of Medical Virology, 2020, 92(3): 263-270.
doi: 10.1002/jmv.25620 pmid: 31674680
[10]   Burns C C, Shaw J, Jorba J, et al. Multiple independent emergences of type 2 vaccine-derived polioviruses during a large outbreak in northern Nigeria. Journal of Virology, 2013, 87(9): 4907-4922.
doi: 10.1128/JVI.02954-12 pmid: 23408630
[11]   席念楚. 炭疽病离我们有多远. 中国家庭报, 2021-08-26(013).
[11]   Xi N C. How far is anthrax from us. China Family News, 2021-08-26(013).
[12]   Pena-Gonzalez A, Rodriguez-R L M, Marston C K, et al. Genomic characterization and copy number variation of Bacillus anthracis plasmids pXO1 and pXO 2 in a historical collection of 412 strains. mSystems, 2018, 3(4): e00065-18.
[13]   李伟, 俞东征. 炭疽芽孢杆菌重要生物活性基因及其调控. 中华流行病学杂志, 2004, 25(5): 445-448.
[13]   Li W, Yu D Z. Important bioactive genes of Bacillus anthracis and their regulation. Chinese Journal of Epidemiology, 2004, 25(5): 445-448.
[14]   Meyerson L A, Reaser J K. Bioinvasions, bioterrorism, and biosecurity. Frontiers in Ecology and the Environment, 2003, 1(6): 307-314.
doi: 10.1890/1540-9295(2003)001[0307:BBAB]2.0.CO;2
[15]   高海侠, 卢芳, 姜西迪, 等. 鼠伤寒沙门氏菌baeR过表达株的构建及其耐药性. 微生物学通报, 2022, 49(2): 659-678.
[15]   Gao H X, Lu F, Jiang X D, et al. Construction and antibiotic resistance of a Salmonella typhimurium strain overexpressing bae R. Microbiology China, 2022, 49(2): 659-678.
[16]   Cenciarelli O, Riley P W, Baka A. Biosecurity threat posed by botulinum toxin. Toxins, 2019, 11(12): 681.
doi: 10.3390/toxins11120681
[17]   罗森, 陈芳红, 李涛, 等. B型肉毒毒素轻链的高效制备及活性鉴定. 生物技术通讯, 2018, 29(1): 59-63.
[17]   Luo S, Chen F H, Li T, et al. High-level expression and purification of BoNT/B LC and its identification. Letters in Biotechnology, 2018, 29(1): 59-63.
[18]   Polito L, Bortolotti M, Battelli M G, et al. Ricin: an ancient story for a timeless plant toxin. Toxins, 2019, 11(6): 324.
doi: 10.3390/toxins11060324
[19]   边红. 糖基化修饰对蓖麻毒素A链毒性影响的研究. 长春: 吉林农业大学, 2018.
[19]   Bian H. Study on the effect of glycosylation modification on the toxicity of ricin a chain. Changchun: Jilin Agricultural University, 2018.
[20]   柴绍明. 蓖麻毒素B链可溶性表达及其工艺优化、纯化. 延吉: 延边大学, 2017.
[20]   Chai S M. Soluble expression of ricin toxin B chain and its process optimization and purication. Yanji: Yanbian University, 2017.
[21]   Smith H O, Hutchison C A 3rd, Pfannkoch C, et al. Generating a synthetic genome by whole genome assembly: phiX174 bacteriophage from synthetic oligonucleotides. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(26): 15440-15445.
[22]   Lv X Q, Wu Y K, Gong M Y, et al. Synthetic biology for future food: research progress and future directions. Future Foods, 2021, 3: 100025.
doi: 10.1016/j.fufo.2021.100025
[23]   徐振伟. 构建安全之网: 美国生物国防计划评析. 太平洋学报, 2019, 27(8): 11-28.
[23]   Xu Z W. Building the security network: an analysis of the US biodefense plan. Pacific Journal, 2019, 27(8): 11-28.
[24]   Koblentz G D. From biodefence to biosecurity: the Obama administration’s strategy for countering biological threats. International Affairs, 2012, 88(1): 131-148.
pmid: 22400153
[25]   高德胜, 周笑宇. 美国《国家生物安全防御战略》文本解读及其对我国生物安全建设的启示. 求是学刊, 2020, 47(2): 14-22.
[25]   Gao D S, Zhou X Y. Textual interpretation of national biosecurity defense strategy in the United States and its implications for the construction of biosecurity in China. Seeking Truth, 2020, 47(2): 14-22.
[26]   Ye L L. The United States issues national biodefense strategy. Journal of Biosafety and Biosecurity, 2019, 1(1): 3-4.
doi: 10.1016/j.jobb.2019.01.004
[27]   Dan Dupont. National Security Commission on Al approves final report. Inside U.S. Trade, 2021, 39(9): 7-8.
[28]   王丽英, 格根其日. 俄罗斯生物安全法述评. 口岸卫生控制, 2021, 26(1): 45-49.
[28]   Wang L Y, Ge G. Commentary on Russian biosafety law. Port Health Control, 2021, 26(1): 45-49.
[29]   宋琪, 丁陈君, 陈方. 俄罗斯生物安全法律法规体系建设简析. 世界科技研究与发展, 2020, 42(3): 288-297.
[29]   Song Q, Ding C J, Chen F. Brief analysis on construction of Russian biosafety law and regulation system. World Sci-Tech R & D, 2020, 42(3): 288-297.
[30]   吴晓燕, 陈方. 英国国家生物安全体系建设分析与思考. 世界科技研究与发展, 2020, 42(3): 265-275.
[30]   Wu X Y, Chen F. Analysis of biosafety system construction in the UK. World Sci-Tech R & D, 2020, 42(3): 265-275.
[31]   Wang X. Era of biological security. Journal of Biosafety and Biosecurity, 2019, 1(1): 2.
[32]   胡韦唯. 工程师视域下合成生物学伦理问题探析. 合肥: 中国科学技术大学, 2021.
[32]   Hu W W. Analysis on the ethics of synthetic biology from the perspective of engineers. Hefei: University of Science and Technology of China, 2021.
[33]   DiEuliis D. Key national security questions for the future of synthetic biology. The Fletcher Forum of World Affairs, 2019, 43(1): 127-143.
[34]   欧亚昆, 雷瑞鹏, 冀朋. 合成生物学的安全伦理问题及其对策初探. 生物产业技术, 2019(1): 91-94.
[34]   Ou Y K, Lei R P, Ji P. Discussion on safety ethics of synthetic biology and its countermeasures. Biotechnology & Business, 2019(1): 91-94.
[35]   钱万强, 墨宏山, 闫金定, 等. 合成生物学安全伦理研究现状. 中国基础科学, 2013, 15(4): 13-16.
[35]   Qian W Q, Mo H S, Yan J D, et al. The research status of synthetic biology safety ethics. China Basic Science, 2013, 15(4): 13-16.
[36]   田亦尧, 李欣冉. 生物技术伦理的法律规制逻辑转换——从生物安全立法展开. 东北大学学报(社会科学版), 2021, 23(3): 80-87.
[36]   Tian Y Y, Li X R. Transformation of the legal regulation logic of the biotechnology ethics: based on the biosecurity legislation. Journal of Northeastern University (Social Science), 2021, 23(3): 80-87.
[37]   本刊综合. 促进生物技术健康发展, 实现人与自然和谐共生——《中华人民共和国生物安全法》解读. 中国科技产业, 2021(5): 10-11.
[37]   Ben K. Promoting the healthy development of biotechnology and realizing the harmonious coexistence between man and nature —— Interpretation of the biosafety law of the people’s Republic of China. Science & Technology Industry of China, 2021(5): 10-11.
[38]   Reis B Y, Kirby C, Hadden L E, et al. AEGIS: a robust and scalable real-time public health surveillance system. Journal of the American Medical Informatics Association, 2007, 14(5): 581-588.
pmid: 17600100
[39]   周李承, 文哲, 罗伟权, 等. 建立全球传染病疫情监测、预警及应对的3M-SPR体系, 防范和应对国门生物安全风险研究. 口岸卫生控制, 2021, 26(5): 27-30, 34.
[39]   Zhou L C, Wen Z, Luo W Q, et al. Research on the establishment of 3M-SPR system of global infectious disease surveillance, early warning and response to prevent and deal with biosafety risks at POEs in China. Port Health Control, 2021, 26(5): 27-30, 34.
[40]   Besser J, Carleton H A, Gerner-Smidt P, et al. Next-generation sequencing technologies and their application to the study and control of bacterial infections. Clinical Microbiology and Infection, 2018, 24(4): 335-341.
doi: 10.1016/j.cmi.2017.10.013
[41]   van Dijk E L, Auger H, Jaszczyszyn Y, et al. Ten years of next-generation sequencing technology. Trends in Genetics, 2014, 30(9): 418-426.
doi: 10.1016/j.tig.2014.07.001 pmid: 25108476
[42]   云妙婷, 刘琼, 王秉. 面向生物安全治理的生物安全情报支持体系研究. 图书馆杂志, 2022, 41(9): 12-20.
[42]   Yun M T, Liu Q, Wang B. Research on biosafety and biosecurity intelligence support system for biosafety and biosecurity governance. Library Journal, 2022, 41(9): 12-20.
[43]   王秉. 生物安全情报: 一个安全情报学的重要新议题. 情报杂志, 2020, 39(10): 45-50, 5.
[43]   Wang B. Bio-security & safety intelligence: a significant new topic in security & safety intelligence science. Journal of Intelligence, 2020, 39(10): 45-50, 5.
[44]   王明程, 张冬冬. 美国生物监测情报体系建设及启示研究. 情报杂志, 2021, 40(3): 23-31.
[44]   Wang M C, Zhang D D. Research on the construction and enlightenment of American biosurveillance intelligence system. Journal of Intelligence, 2021, 40(3): 23-31.
[45]   余文水, 蔡志明. 合成生物学在医学领域的研究进展. 医学综述, 2013, 19(9): 1558-1560.
[45]   Yu W S, Cai Z M. Research development of syhthetic biology in medical field. Medical Recapitulate, 2013, 19(9): 1558-1560.
[46]   冯晴晴, 张天鲛, 赵潇, 等. 合成纳米生物学——合成生物学与纳米生物学的交叉前沿. 合成生物学, 2022, 3(2): 260-278.
doi: 10.12211/2096-8280.2021-035
[46]   Feng Q Q, Zhang T J, Zhao X, et al. Synthetic nanobiology: fusion of synthetic biology and nanobiology. Synthetic Biology Journal, 2022, 3(2): 260-278.
doi: 10.12211/2096-8280.2021-035
[1] GUO Yan-tong,LIU Zhong-ming,ZHANG Hai-yan,ZHANG Bao. Molecular Diagnostic POCT Technology and Its Application in Emerging Infectious Diseases[J]. China Biotechnology, 2022, 42(9): 50-57.
[2] Xue-xia ZENG,Yu DAN,Shao-ming MAO,Jia-hui SUN,Guo-dong LUAN,Xue-feng LV. Research Progress on the Cyanobacterial Photosynthetic Production of Sugars Utilizing Carbon Dioxide[J]. China Biotechnology, 2022, 42(7): 90-100.
[3] ZHANG Da-lu,GE Qi,FENG Yi-bo,CHEN Wei-gang. Comparison and Analysis on Scientific Research Programs on DNA Data Storage[J]. China Biotechnology, 2022, 42(6): 116-129.
[4] BAI Song,HOU Zheng-jie,GAO Geng-rong,QIAO Bin,CHENG Jing-sheng. Advances in the Synthesis of Odd-chain Fatty Acids by Microorganisms[J]. China Biotechnology, 2022, 42(6): 76-85.
[5] LIANG Shi-yu,WAN Li,GUO Xiao-jia,WANG Xue-ying,LV Li-ting,HU Ying-han,ZHAO Zong-bao. Engineered Rhodosporidium toruloides Strains Capable of Biosynthesizing a Non-natural Cofactor[J]. China Biotechnology, 2022, 42(5): 58-68.
[6] Chun-li HAN,Han-jie WANG. Advances of Engineered Live Biotherapeutics in Tumor Immunotherapy[J]. China Biotechnology, 2022, 42(10): 39-50.
[7] Hui-min LI,Bin JIA,Xia LI,Duo LIU. Advances in Engineering Yeast Chassis for Producing Aromatic Compounds[J]. China Biotechnology, 2022, 42(10): 80-92.
[8] MA Ning,WANG Han-jie. Advances of Optogenetics in the Regulation of Bacterial Production[J]. China Biotechnology, 2021, 41(9): 101-109.
[9] HUANG Huan-bang,WU Yang,YANG You-hui,WANG Zhao-guan,QI Hao. Progress in Incorporation of Non-canonical Amino Acid Based on Archaeal Tyrosyl-tRNA Synthetase[J]. China Biotechnology, 2021, 41(9): 110-125.
[10] GUO Man-man,TIAN Kai-ren,QIAO Jian-jun,LI Yan-ni. Application of Phage Recombinase Systems in Synthetic Biology[J]. China Biotechnology, 2021, 41(8): 90-102.
[11] DONG Shu-xin,QIN Lei,LI Chun,LI Jun. Transcription Factor Engineering Harnesses Metabolic Networks to Meet Efficient Production in Cell Factories[J]. China Biotechnology, 2021, 41(4): 55-63.
[12] MA Li-li,YI Pan-pan,AO Ni-hua,JIAO Hong-tao,LEI Rui-peng,LIU Huan. A Study of Interdisciplinarity in Biosafety Research Based on Discipline Categories and Enrichment Analysis[J]. China Biotechnology, 2021, 41(12): 116-124.
[13] ZHENG Yi,GUO Shi-ying,SUI Feng-xiang,YANG Qi-yu,WEI Ya-xuan,LI Xiao-yan. Applications of Quorum Sensing Systems in Synthetic Biology[J]. China Biotechnology, 2021, 41(11): 100-109.
[14] CHA Ya-ping, ZHU Mu-zi, LI Shuang. Research Progress on In Vivo Continuous Directed Evolution[J]. China Biotechnology, 2021, 41(1): 42-51.
[15] GUO Er-peng, ZHANG Jian-zhi, SI Tong. Recent Advances in the High-throughput Engineering of Lanthipeptides[J]. China Biotechnology, 2021, 41(1): 30-41.