Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2022, Vol. 42 Issue (12): 111-119    DOI: 10.13523/j.cb.2206061
    
Effects of Deep Eutectic Solvents on Enzyme
ZHAO Nan-shan1,2,ZHAO Ya-xin1,ZHANG Hai-hua1,YANG Dong-feng1,2,LIANG Zong-suo1,2,GUO Jian-jun1,2,**()
1 College of Life Sciences and Medicine, Zhejiang Sci-tech University, Hangzhou 310018, China
2 Zhejiang Sci-tech University Shaoxing Academy of Biomedicine, Shaoxing 312090, China
Download: HTML   PDF(640KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Deep eutectic solvent is a new type of green solvent, which is composed of hydrogen bond acceptor and hydrogen bond donor with a certain stoichiometric ratio. It has low preparation cost and is friendly to the environment. It can be used as an alternative solvent for ordinary organic solvents and ionic liquids.As a biocatalyst, enzyme has mild reaction conditions, high substrate specificity, and high catalytic efficiency and reaction speed. Enzymatic reaction usually occurs in aqueous solution, but recently it has been found that it can also be carried out effectively in deep eutectic solvents. In order to better understand the effects of deep eutectic solvents on enzyme, the mechanism of the interaction between enzyme and deep eutectic solvents and the latest progress in application are systematically discussed. At the same time, the advantages and disadvantages of deep eutectic solvents in enzymatic reaction are evaluated. Finally, the future development prospects are discussed.



Key wordsDeep eutectic solvents      Enzyme      Catalysis     
Received: 30 June 2022      Published: 05 January 2023
ZTFLH:  Q814  
Corresponding Authors: Jian-jun GUO     E-mail: biojjguo@zstu.edu.cn
Cite this article:

ZHAO Nan-shan,ZHAO Ya-xin,ZHANG Hai-hua,YANG Dong-feng,LIANG Zong-suo,GUO Jian-jun. Effects of Deep Eutectic Solvents on Enzyme. China Biotechnology, 2022, 42(12): 111-119.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2206061     OR     https://manu60.magtech.com.cn/biotech/Y2022/V42/I12/111

Fig.1 Common hydrogen bond donor and hydrogen bond receptor structures Hydrogen bond receptor: (a) Choline chloride (b) Glycine betaine (c) Sucrose; Hydrogen bond donor: (d) Urea (e) Ethylene glycol (f) Glycerin (g) Methyl urea (h) Lactic acid (i) Butylene glycol (j) Xylitol
种类 示例 主要应用领域
金属盐+季铵盐 ChCl-ZnCl2 有毒气体去除[10]
水合金属盐+季铵盐 ChCl-CrCl3·6H2O 大规模工业过程[11]
氢键供体+季铵盐 ChCl-Urea 天然产物提取[12]、金属电沉积[13-14]、制备生物柴油[15]
氢键供体+金属水合盐 MgCl2·6H2O-(CH2OH)2 合成纳米结构[16]
Table 1 Classification and application of deep eutectic solvents
原材料 低共熔溶剂 配比 辅助手段 目标产物 产量 参考文献
洋蓍草 氯化胆碱∶乳酸 1∶2 超声 总酚 (35.44 ± 2.12)mg/g [32]
爪哇龙船花 氯化胆碱∶1,2-丙二醇 1∶1 超声 阿魏酸 (12.937 ± 0.169)mg/g [33]
黄芪 氯化胆碱∶尿素 1∶2 加热 没食子酸 (1.89 ± 0.05)μg/mg [34]
鞣花酸 (12.76 ± 0.13)μg/mg
可水解单宁 (181.26 ± 0.159)μg/mg
黑胡萝卜 氯化胆碱∶柠檬酸 - 超声 花青素-3-O-糖苷 (16.855 ± 0.09)mg/g [35]
粟细糠 甜菜碱∶甘油 1∶2 超声 总酚 (7.80 ± 0.09)mg/g [36]
甜叶菊 1,2-丙二醇∶甘油∶水 8∶1∶1 超声 甜菊苷 3.48 mg/mL [37]
复方甘草片 1,4-丁二醇∶乙酰丙酸 1∶3 超声 甘草苷 5.6 mg/g [38]
异甘草苷 3.17 mg/g
甘草素 1.27 mg/g
甘草酸 74.62 mg/g
异甘草素 1.34 mg/g
文冠果 四丙基溴化铵∶乳酸 1∶2 加热 皂苷 (72.11 ± 0.61)mg/g [39]
鸡矢藤 氯化胆碱∶乙二醇 1∶2 超声 总黄酮 27.04 mg/g [26]
显齿蛇葡萄叶 氯化胆碱∶葡萄糖 4∶1 超声 黄酮 83.93% [27]
云杉叶 氯化胆碱∶二羧酸 1∶1 - 黄酮 217.56 μg/mL [12]
Table 2 Extraction of plant active ingredients with deep eutectic solvents
Fig.2 Production process of deep eutectic solvents and lignofibrous biomass
[1]   Guajardo N, Domínguez de María P, Canales R. Integrating biocatalysis with viscous deep eutectic solvents in lab-on-a-chip microreactors. ChemSusChem, 2022, 15(9): e202102674.
[2]   Li Q, Ma C L, Di J H, et al. Catalytic valorization of biomass for furfuryl alcohol by novel deep eutectic solvent-silica chemocatalyst and newly constructed reductase biocatalyst. Bioresource Technology, 2022, 347: 126376.
doi: 10.1016/j.biortech.2021.126376
[3]   Zhang S L, Ma C L, Li Q, et al. Efficient chemoenzymatic valorization of biobased D-fructose into 2, 5-bis(hydroxymethyl)furan with deep eutectic solvent lactic acid: betaine and Pseudomonas putida S 12 whole cells. Bioresource Technology, 2022, 344: 126299.
doi: 10.1016/j.biortech.2021.126299
[4]   Abbott A P, Capper G, Davies D L, et al. Novel solvent properties of choline chloride/urea mixtures. Chemical Communications (Cambridge, England), 2003(1): 70-71.
[5]   Kist J A, Zhao H, Mitchell-Koch K R, et al. The study and application of biomolecules in deep eutectic solvents. Journal of Materials Chemistry B, 2021, 9(3): 536-566.
doi: 10.1039/d0tb01656j pmid: 33289777
[6]   Marchel M, Cieśliński H, Boczkaj G. Deep eutectic solvents microbial toxicity: current state of art and critical evaluation of testing methods. Journal of Hazardous Materials, 2022, 425: 127963.
[7]   Zhang Q H, de Oliveira Vigier K, Royer S, et al. Deep eutectic solvents: syntheses, properties and applications. Chemical Society Reviews, 2012, 41(21): 7108-7146.
doi: 10.1039/c2cs35178a pmid: 22806597
[8]   Yusof R, Jumbri K, Ahmad H, et al. Binding of tetrabutylammonium bromide based deep eutectic solvent to DNA by spectroscopic analysis. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 253: 119543.
doi: 10.1016/j.saa.2021.119543
[9]   Wang X L, Liu M, Peng F X, et al. Hydrophobic magnetic deep eutectic solvent: synthesis, properties, and application in DNA separation. Journal of Chromatography A, 2021, 1659: 462626.
doi: 10.1016/j.chroma.2021.462626
[10]   王宝华. 功能性绿色非水溶剂对于硫化氢的去除研究. 淄博: 山东理工大学, 2021.
[10]   Wang B H. Study on the removal of hydrogen sulfide using functional green nonaqueous solvent system. Zibo: Shandong University of Technology, 2021.
[11]   Smith E L, Abbott A P, Ryder K S. Deep eutectic solvents (DESs) and their applications. Chemical Reviews, 2014, 114(21): 11060-11082.
doi: 10.1021/cr300162p pmid: 25300631
[12]   Lee J W, Park H Y, Park J. Enhanced extraction efficiency of flavonoids from Pyrus ussuriensis leaves with deep eutectic solvents. Molecules (Basel, Switzerland), 2022, 27(9): 2798.
doi: 10.3390/molecules27092798
[13]   孙海静, 杨帅, 王贺, 等. ChCl-Urea低共熔溶剂中电沉积锌的工艺研究. 电镀与精饰, 2021, 43(11): 23-28.
[13]   Sun H J, Yang S, Wang H, et al. Study on the technology of zinc electrodeposition in ChCl-urea deep eutectic solvent. Plating and Finishing, 2021, 43(11): 23-28.
[14]   孙海静, 杨帅, 丁明玉, 等. ChCl-OxA低共熔溶剂中铜的电沉积行为研究. 表面技术, 2021, 50(11): 313-320.
[14]   Sun H J, Yang S, Ding M Y, et al. Electrochemical behavior of copper electroplating progress in ChCl-OxA eutectic solvent. Surface Technology, 2021, 50(11): 313-320.
[15]   Khan N, Park S H, Kadima L, et al. Locally sustainable biodiesel production from waste cooking oil and grease using a deep eutectic solvent: characterization, thermal properties, and blend performance. ACS Omega, 2021, 6(13): 9204-9212.
doi: 10.1021/acsomega.1c00556 pmid: 33842789
[16]   李娜.基于低共熔溶剂的微/纳米结构镁、 锶化合物的制备及性能研究. 北京: 北京科技大学, 2020.
[16]   Li N. Synthesis and performance study of magnesium and strontium compounds with micro-/ nano structure based on deep eutectic solvents. Beijing: University of Science and Technology Beijing, 2020.
[17]   Peng F X, Liu M, Wang X L, et al. Synthesis of low-viscosity hydrophobic magnetic deep eutectic solvent: selective extraction of DNA. Analytica Chimica Acta, 2021, 1181: 338899.
doi: 10.1016/j.aca.2021.338899
[18]   李菲, 王永华, 蓝东明. 天然低共熔溶剂对绿色荧光蛋白的保护作用. 现代食品科技, 2018, 34(10): 44-48.
[18]   Li F, Wang Y H, Lan D M. Protective effect of natural deep eutectic solvent on green fluorescent protein. Modern Food Science and Technology, 2018, 34(10): 44-48.
[19]   Maity A, Sarkar S, Theeyancheri L, et al. Choline chloride as a nano-crowder protects HP-36 from urea-induced denaturation: insights from solvent dynamics and protein-solvent interactions. ChemPhysChem, 2020, 21(6): 552-567.
doi: 10.1002/cphc.201901078 pmid: 31971306
[20]   朱振宝, 梁珍珍, 易建华. 低共熔溶剂对燕麦蛋白质提取的影响. 陕西科技大学学报, 2022, 40(1): 51-56.
[20]   Zhu Z B, Liang Z Z, Yi J H. Effect of deep eutectic solvents on oat protein extraction. Journal of Shaanxi University of Science & Technology, 2022, 40(1): 51-56.
[21]   Xu Y F, Wang Q F, Hou Y H. Efficient purification of R-phycoerythrin from marine algae (Porphyra yezoensis) based on a deep eutectic solvents aqueous two-phase system. Marine Drugs, 2020, 18(12): 618.
doi: 10.3390/md18120618
[22]   Han S, Yao A X, Ding Y X, et al. A molecularly imprinted polymer based on MOF and deep eutectic solvent for selective recognition and adsorption of bovine hemoglobin. Analytical and Bioanalytical Chemistry, 2021, 413(21): 5409-5417.
doi: 10.1007/s00216-021-03520-3 pmid: 34235569
[23]   Olivares-Galván S, Marina M L, García M C. Extraction and characterization of antioxidant peptides from fruit residues. Foods (Basel, Switzerland), 2020, 9(8): 1018.
[24]   Wang R M, Wang L, Zhang L, et al. Solvents effect on phenolics, iridoids, antioxidant activity, antibacterial activity, and pancreatic lipase inhibition activity of noni (Morinda citrifolia L.) fruit extract. Food Chemistry, 2022, 377: 131989.
doi: 10.1016/j.foodchem.2021.131989
[25]   Mansinhos I, Gonçalves S, Rodríguez-Solana R, et al. Ultrasonic-assisted extraction and natural deep eutectic solvents combination: a green strategy to improve the recovery of phenolic compounds from Lavandula pedunculata subsp. lusitanica (chaytor) Franco. Antioxidants (Basel, Switzerland), 2021, 10(4): 582.
[26]   Liu Y X, Zhe W, Zhang R F, et al. Ultrasonic-assisted extraction of polyphenolic compounds from Paederia scandens (Lour.) Merr. using deep eutectic solvent: optimization, identification, and comparison with traditional methods. Ultrasonics Sonochemistry, 2022, 86: 106005.
doi: 10.1016/j.ultsonch.2022.106005
[27]   Zhen S Y, Chen S, Geng S, et al. Ultrasound-assisted natural deep eutectic solvent extraction and bioactivities of flavonoids in Ampelopsis grossedentata leaves. Foods (Basel, Switzerland), 2022, 11(5): 668.
[28]   Zhang X, Su J, Chu X, et al. A green method of extracting and recovering flavonoids from Acanthopanax senticosus using deep eutectic solvents. Molecules (Basel, Switzerland), 2022, 27(3): 923.
doi: 10.3390/molecules27030923
[29]   Cai C Y, Wang Y N, Yu W, et al. Temperature-responsive deep eutectic solvents as green and recyclable media for the efficient extraction of polysaccharides from Ganoderma lucidum. Journal of Cleaner Production, 2020, 274: 123047.
doi: 10.1016/j.jclepro.2020.123047
[30]   Yang G Y, Song J N, Chang Y Q, et al. Natural deep eutectic solvents for the extraction of bioactive steroidal saponins from dioscoreae nipponicae rhizoma. Molecules (Basel, Switzerland), 2021, 26(7): 2079.
doi: 10.3390/molecules26072079
[31]   Qiao Q, Shi J, Shao Q. Effects of water on the solvation and structure of lipase in deep eutectic solvents containing a protein destabilizer and stabilizer. Physical Chemistry Chemical Physics, 2021, 23(40): 23372-23379.
doi: 10.1039/d1cp03282h pmid: 34636834
[32]   Ivanović M, Grujić D, Cerar J. et al. Extraction of bioactive metabolites from Achillea millefolium L. with choline chloride based natural deep eutectic solvents: a study of the antioxidant and antimicrobial activity. Antioxidants (Basel, Switzerland), 2022, 11(4): 724.
[33]   Oktaviyanti N D, Setiawan F, Kartini K, et al. Development of a simple and rapid HPLC-UV method for ultrasound-assisted deep eutectic solvent extraction optimization of ferulic acid and antioxidant activity from Ixora javanica flowers. South African Journal of Chemical Engineering, 2022, 40: 165-175.
doi: 10.1016/j.sajce.2022.03.004
[34]   Kovač M J, Jokić S, Jerković I, et al. Optimization of deep eutectic solvent extraction of phenolic acids and tannins from Alchemilla vulgaris L. Plants (Basel, Switzerland), 2022, 11(4): 474.
[35]   Aslan Türker D, Doğan M. Ultrasound-assisted natural deep eutectic solvent extraction of anthocyanin from black carrots: optimization, cytotoxicity, in-vitro bioavailability and stability. Food and Bioproducts Processing, 2022, 132: 99-113.
[36]   Zheng B L, Yuan Y, Xiang J L, et al. Green extraction of phenolic compounds from foxtail millet bran by ultrasonic-assisted deep eutectic solvent extraction: Optimization, comparison and bioactivities. LWT, 2022, 154: 112740.
doi: 10.1016/j.lwt.2021.112740
[37]   缪晴, 萨比哈·帕合尔丁, 曾思瑀, 等. 基于天然低共熔溶剂的甜叶菊中甜菊糖绿色提取方法及优化. 植物学报, 2021, 56(6): 722-731.
doi: 10.11983/CBB21064
[37]   Miao Q, Pa-he-er-ding S, Zeng S Y, et al. Green extraction method and optimization of steviosides from stevia rebaudiana by natural deep eutectic solvent. Chinese Bulletin of Botany, 2021, 56(6): 722-731.
doi: 10.11983/CBB21064
[38]   Dong J N, Wu G D, Dong Z Q, et al. Natural deep eutectic solvents as tailored and sustainable media for the extraction of five compounds from compound liquorice tablets and their comparison with conventional organic solvents. RSC Advances, 2021, 11(59): 37649-37660.
doi: 10.1039/D1RA06338C
[39]   Cao J T, Wu G W, Wang L, et al. Oriented deep eutectic solvents as efficient approach for selective extraction of bioactive saponins from husks of Xanthoceras sorbifolia bunge. Antioxidants (Basel, Switzerland), 2022, 11(4): 736.
[40]   Zhou Y, Wu Y J, Wang L, et al. Natural deep eutectic solvents as green and biocompatible reaction medium for carbonic anhydrase catalysis. International Journal of Biological Macromolecules, 2021, 190: 206-213.
doi: 10.1016/j.ijbiomac.2021.08.221 pmid: 34492243
[41]   Chan J C, Zhang B X, Martinez M, et al. Structural studies of myceliophthora thermophila laccase in the presence of deep eutectic solvents. Enzyme and Microbial Technology, 2021, 150: 109890.
doi: 10.1016/j.enzmictec.2021.109890
[42]   Cao S L, Gu W M, Ou-Yang W D, et al. Preparation, characterization and application of rod-like chitin nanocrystal by using p-toluenesulfonic acid/choline chloride deep eutectic solvent as a hydrolytic media. Carbohydrate Polymers, 2019, 213: 304-310.
doi: 10.1016/j.carbpol.2019.02.092
[43]   Monhemi H, Housaindokht M R, Moosavi-Movahedi A A, et al. How a protein can remain stable in a solvent with high content of urea: insights from molecular dynamics simulation of Candida antarctica lipase B in urea: choline chloride deep eutectic solvent. Physical Chemistry Chemical Physics, 2014, 16(28): 14882-14893.
doi: 10.1039/c4cp00503a pmid: 24930496
[44]   Khodaverdian S, Dabirmanesh B, Heydari A, et al. Activity, stability and structure of laccase in betaine based natural deep eutectic solvents. International Journal of Biological Macromolecules, 2018, 107: 2574-2579.
doi: S0141-8130(17)32649-1 pmid: 29079436
[45]   Varriale S, Delorme A E, Andanson J M, et al. Enhancing the thermostability of engineered laccases in aqueous betaine-based natural deep eutectic solvents. ACS Sustainable Chemistry & Engineering, 2022, 10(1): 572-581.
[46]   Cao J, Wu R, Zhu F, et al. Enzymes in nearly anhydrous deep eutectic solvents: insight into the biocompatibility and thermal stability. Enzyme and Microbial Technology, 2022, 157: 110022.
doi: 10.1016/j.enzmictec.2022.110022
[47]   Das N, Khan T, Subba N, et al. Correlating Bromelain’s activity with its structure and active-site dynamics and the medium’s physical properties in a hydrated deep eutectic solvent. Physical Chemistry Chemical Physics, 2021, 23(15): 9337-9346.
doi: 10.1039/D1CP00046B
[48]   Hoppe J, Byzia E, Szymańska M, et al. Acceleration of lactose hydrolysis using beta-galactosidase and deep eutectic solvents. Food Chemistry, 2022, 384: 132498.
doi: 10.1016/j.foodchem.2022.132498
[49]   Nian B B, Cao C, Liu Y F. Synergistic catalytic synthesis of gemini lipoamino acids based on multiple hydrogen-bonding interactions in natural deep eutectic solvents-enzyme system. Journal of Agricultural and Food Chemistry, 2020, 68(4): 989-997.
doi: 10.1021/acs.jafc.9b07446 pmid: 31909616
[50]   Chanquia S N, Huang L, García Liñares G, et al. Deep eutectic solvents as smart cosubstrate in alcohol dehydrogenase-catalyzed reductions. Catalysts, 2020, 10(9): 1013.
doi: 10.3390/catal10091013
[51]   Gonawan F N, Bakar P N M A, Kamaruddin A H. Choline chloride-urea deep eutectic mixture water for the synthesis of an amphiphilic compound of glyceryl monocaffeate. Journal of Oleo Science, 2021, 70(10): 1437-1445.
doi: 10.5650/jos.ess21010 pmid: 34497176
[52]   Han X, Li W N, Ma X X, et al. Enzymatic hydrolysis and extraction of ginsenoside recovered from deep eutectic solvent-salt aqueous two-phase system. Journal of Bioscience and Bioengineering, 2020, 130(4): 390-396.
doi: S1389-1723(20)30232-2 pmid: 32591224
[53]   郭明, 胡昌华. 生物转化-从全细胞催化到代谢工程. 中国生物工程杂志, 2010, 30(4): 110-115.
[53]   Guo M, Hu C H. Bioconversion-from whole cell biocatalysis to metabolic engineering. China Biotechnology, 2010, 30(4): 110-115.
[54]   Cao J, Wu R, Dong Q H, et al. Effective release of intracellular enzymes by permeating the cell membrane with hydrophobic deep eutectic solvents. ChemBioChem, 2020, 21(5): 672-680.
doi: 10.1002/cbic.201900502 pmid: 31535442
[55]   Sun H F, Xin R, Qu D H, et al. Mechanism of deep eutectic solvents enhancing catalytic function of cytochrome P450 enzymes in biosynthesis and organic synthesis. Journal of Biotechnology, 2020, 323: 264-273.
doi: S0168-1656(20)30179-6 pmid: 32653640
[56]   Zhu Z R, Bi S D, Ye N, et al. High-efficient production of (S)-1-[3, 5-bis(trifluoromethyl)phenyl]ethanol via whole-cell catalyst in deep-eutectic solvent-containing micro-aerobic medium system. Molecules, 2020, 25(8): 1855.
doi: 10.3390/molecules25081855
[57]   张红明, 赵君宇, 高凤翔, 等. PET的解聚-共缩聚“一锅法”合成生物降解高分子的研究. 高分子学报, 2022, 53(9): 1142-1149.
[57]   Zhang H M, Zhao J Y, Gao F X, et al. Synthesis of biodegradable polymers by “one pot” depolymerization and polycondensation of PET. Acta Polymerica Sinica, 2022, 53(9): 1142-1149.
[58]   孙承博, 张珠宝, 陈艺中, 等. 一锅三步由硝基芳烃合成邻氨基酚衍生物. 大学化学, 2022, 37(5): 179-186.
[58]   Sun C B, Zhang Z B, Chen Y Z, et al. One-pot, three-step synthesis of o-aminophenol derivatives from nitro arenes. University Chemistry, 2022, 37(5): 179-186.
[59]   陈昌略, 王必伟. 复合固体碱催化一锅法合成愈创木酚甘油醚研究. 化工生产与技术, 2021, 27(6): 9-11, 8.
[59]   Chen C L, Wang B W. Study on the one-step synthesis of guaiacol glycerol ether catalyzed by composite solid base. Chemical Production and Technology, 2021, 27(6): 9-11, 8.
[60]   赵宗保, 谢海波, 李昌志, 等,离子液体介导的生物质转化//中国化工学会,2013中国化工学会年会论文集. 南京: 中国化工学会, 2013: 336-337.
[60]   Zhao Z B, Xie H B, Li C Z, et al,Ionic liquids-mediated biomass conversion//The Chemical Industry and Engineering Society of China, Proceedings of the 2013 Annual Meeting of the Chemical Industry and Engineering Society of China. Nanjing: The Chemical Industry and Engineering Society of China, 2013: 336-337.
[61]   Rathnasamy S K, Durai A, Vigneshkumar A A, et al. One-pot simultaneous production and sustainable purification of fibrinolytic protease from Bacillus cereus using natural deep eutectic solvents. Scientific Reports, 2020, 10: 13356.
doi: 10.1038/s41598-020-70414-2 pmid: 32770127
[62]   Ríos-Lombardía N, Rodríguez-Álvarez M J, Morís F, et al. DESign of sustainable one-pot chemoenzymatic organic transformations in deep eutectic solvents for the synthesis of 1, 2-disubstituted aromatic olefins. Frontiers in Chemistry, 2020, 8: 139.
doi: 10.3389/fchem.2020.00139 pmid: 32211377
[63]   Wang X M, Zhao X X, Qin X L, et al. Immobilized MAS1 lipase-catalyzed synthesis of n-3 PUFA-rich triacylglycerols in deep eutectic solvents. Journal of Oleo Science, 2021, 70(2): 227-236.
doi: 10.5650/jos.ess20200 pmid: 33456003
[64]   Ma X N, Chen Z L, Han J, et al. Fabrication of immobilized bromelain using cobalt phosphate material prepared in deep eutectic solvent as carrier. Colloids and Surfaces B, Biointerfaces, 2022, 210: 112251.
doi: 10.1016/j.colsurfb.2021.112251
[65]   Liu E S, Segato F, Prade R A, et al. Exploring lignin depolymerization by a bi-enzyme system containing aryl alcohol oxidase and lignin peroxidase in aqueous biocompatible ionic liquids. Bioresource Technology, 2021, 338: 125564.
doi: 10.1016/j.biortech.2021.125564
[66]   Chourasia V R, Pandey A, Pant K K, et al. Improving enzymatic digestibility of sugarcane bagasse from different varieties of sugarcane using deep eutectic solvent pretreatment. Bioresource Technology, 2021, 337: 125480.
doi: 10.1016/j.biortech.2021.125480
[67]   Xie J X, Chen J J, Cheng Z, et al. Pretreatment of pine lignocelluloses by recyclable deep eutectic solvent for elevated enzymatic saccharification and lignin nanoparticles extraction. Carbohydrate Polymers, 2021, 269: 118321.
doi: 10.1016/j.carbpol.2021.118321
[1] REN Ming-jie,WANG Lu-lu,SHEN Ji-hui,FAN Ruo-chen,XU Yong-bin,ZHANG Li-ying,ZHENG Wei,QUAN Chun-shan. Cloning, Expression and Characterization of Phenolic Acid Decarboxylase from Bacillus amyloliquefaciens Q-426[J]. China Biotechnology, 2022, 42(6): 20-29.
[2] PANG Guang-wu,LIANG Zhi-qun. Mutagenic Breeding and Optimization of Fermentation Conditions of Fibrinolytic Enzyme from Marine Bacillus subtilis[J]. China Biotechnology, 2022, 42(12): 27-36.
[3] Shuang JIN,Yun-song YANG,Jin-hua LIANG,Xiao-rui YANG,Xiao-tong LI,Jian-liang ZHU. Study on the Performance of Oxidative Diesel Desulfurization Catalyzed by Bioenzyme/γ-Al2O3 Spheres[J]. China Biotechnology, 2022, 42(10): 21-30.
[4] MIAO Yi-nan,LI Jing-zhi,WANG Shuai,LI Chun,WANG Ying. Research Progress of Key Enzymes in Terpene Biosynthesis[J]. China Biotechnology, 2021, 41(6): 60-70.
[5] ZHANG Lei,TANG Yong-kai,LI Hong-xia,LI Jian-lin,XU Yu-xin,LI Ying-bin,YU Ju-hua. Advances in Promoting Solubility of Prokaryotic Expressed Proteins[J]. China Biotechnology, 2021, 41(2/3): 138-149.
[6] YANG Yun-song,LIANG Jin-hua,YANG Xiao-rui,MA Yi-ming,JIN Shuang,SUN Yao-yao,ZHU Jian-liang. Research Progress in Oxidative Desulfurization of Diesel Oil Catalyzed by Enzymes[J]. China Biotechnology, 2021, 41(10): 109-115.
[7] WANG Guang-lu, WANG Meng-yuan, ZHOU Yi-fei, MA Ke, ZHANG Fan, YANG Xue-peng. Research Progress in Pyrrologuinoline Quinone Biosynthesis[J]. China Biotechnology, 2021, 41(1): 103-113.
[8] WU Hong-xuan, YANG Jin-hua, SHEN Pei-jie, LI Qing-chen, HUANG Jian-zhong, QI Feng. Study on the Production of Indole-3-acetic Acid Using E. coli Cell Factory[J]. China Biotechnology, 2021, 41(1): 12-19.
[9] DONG Lu,ZHANG Ji-fu,ZHANG Yun,HU Yun-feng. Immobilization of Extracellaluar Proteases of Bacillus sp. DL-2 Using Epoxy Resin to Asymmetrically Hydrolyze (±)-1-Phenylethyl Acetate[J]. China Biotechnology, 2020, 40(4): 49-58.
[10] LE Yi-lin,FU Yu,NI Li,SUN Jian-zhong. Expression and Characterization of a Thermostable Pyruvate Ferredoxin Oxidoreductase from the Hyperthermophile Thermotoga neapolitana and Its Application in Acetyl-CoA Production[J]. China Biotechnology, 2020, 40(3): 72-78.
[11] CHEN Xin-yi,LIU Hu,DAI Da-zhang,LI Chun. Strategies to Improve Crystallizability of Glycosylated Enzyme[J]. China Biotechnology, 2020, 40(3): 154-162.
[12] LI Bing-juan,LIU Jin-ding,LIAO Yi-fang,HAN Wen-ying,LIU Ke,HOU Chen-lu,ZHANG Lei. Advances in Protein Engineering of the Old Yellow Enzyme OYE Family[J]. China Biotechnology, 2020, 40(3): 163-169.
[13] LI Zhi-gang,CHEN Bao-feng,ZHANG Zhong-hua,CHANG Jing-ling. The Physiological Mechanism for Enhanced Cyclic Adenosine Monophosphate Biosynthesis by Auxiliary Energy Substance[J]. China Biotechnology, 2020, 40(1-2): 102-108.
[14] HU Yan-hong,GONG Xue-mei,Ding Liu-liu,GAO Song,LI Ting-ting. Highly Efficient Expression and Purification of Ketoreductase CgKR2 Using Brevibacillus choshinensis SP3[J]. China Biotechnology, 2019, 39(8): 59-65.
[15] Heng ZHU,Hai-jiao LIN,Ji-fu ZHANG,Yun ZHANG,Ai-jun SUN,Yun-feng HU. Covalent Immobilization of Marine Candida Rugosa Lipase Using Amino Carrier[J]. China Biotechnology, 2019, 39(7): 71-78.