Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (3): 87-96    DOI: 10.13523/j.cb.20190311
    
Research Progress of Optogenetic Techniques
Xuan-tong GUO1,Chun-bo ZHANG2,**()
1 Nanchang Joint Programme, Queen Mary University of London, Nanchang 330031, China
2 School of Pharmacy, Nanchang University, Nanchang 330031, China
Download: HTML   PDF(706KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Optogenetics is an emerging biological technique that combines optics and genetics to precisely control specific cells within organisms. Since the application of microbial opsins, optogenetics has gained substantial progresses in discovering opsins, optic-control methods and genetic strategies that are based on viruses and recombinases. Optogenetics apply widely in modern neuroscience, playing important roles in the study of neural circuits and behavior, the pathological mechanism of various central nervous system diseases and psychiatric disorders. This review summarizes the development of optogenetic techniques, meanwhile emphasizes the latest advances in the opsin exploration and localized expression, aiming to provide references for research in optogenetics and related fields.



Key wordsOptogenetic      techniques      Light      control      Opsin      Neurobiology     
Received: 01 August 2018      Published: 12 April 2019
ZTFLH:  Q819  
Corresponding Authors: Chun-bo ZHANG     E-mail: cbzhang@ncu.edu.cn
Cite this article:

Xuan-tong GUO,Chun-bo ZHANG. Research Progress of Optogenetic Techniques. China Biotechnology, 2019, 39(3): 87-96.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20190311     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I3/87

年份 光控元件 离子选择性 激活/抑制 激活光谱(nm) 参考目录
2005 ChR2 阳离子通道 激活 400~500 [4]
2012 ChETA 阳离子通道 激活 400~500 [19]
2014 SSFO1) 阳离子通道 激活 470/590 [21]
2014 Chrimson2) 阳离子通道 激活 585/720 [26]
2011 C1V1 阳离子通道 激活 550~570 [23]
2008 NpHR2 氯离子泵 抑制 590~620 [28]
2014 iC1C2 氯离子通道 抑制 475 [55]
2016 SwichR3) 氯离子通道 抑制 475/632 [35]
Table 1 Characteristic Parameters of Common Opsins
Fig.1 Localized expression technology of opsin[21]
Fig.2 Activation of opsin expression in mouse brain[21]
[1]   Editorial. Method of the year 2010 optogenetics. Nature Methods, 2011,8(1):1.
doi: 10.1038/nmeth.f.321
[2]   Deisseroth K, Feng G, Majewska A K , et al. Next-generation optical technologies for illuminating genetically targeted brain circuits. Journal of Neuroscience, 2006,26(41):10380-10386.
doi: 10.1523/JNEUROSCI.3863-06.2006
[3]   Oesterhelt D, Stoeckenius W . Rhodopsin-like protein from the purple membrane of Halobaterium halobium. Nature New Biology, 1971,233:149-152.
[4]   Boyden E S, Zhang F, Deisseroth K , et al. Millisecond-timescale, genetically targeted optical control of neural activity. Nature Neuroscience, 2005,8(9):1263-1268.
doi: 10.1038/nn1525 pmid: 16116447
[5]   Chen Y, Xiong M, Zhang S C . Illuminating Parkinson’s therapy with optogenetics. Nature Biotechnology, 2015,33(2):149-150.
doi: 10.1038/nbt.3140 pmid: 4339091
[6]   Bentley J N, Chestek C, Patil P G , et al. Optogenetics in epilepsy. Neurosurgical Focus, 2013,34(6):E4.
[7]   Crick F . The impact of molecular biology on neuroscience. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 1999,354(1392):2021-2025.
doi: 10.1098/rstb.1999.0541 pmid: 10670022
[8]   Matsuno-Yagi A, Mukohata Y . Two possible roles of bacteriorhodopsin; a comparative study of strains of Halobacterium halobium differing in pigmentation. Biochemical and Biophysical Research Communications, 1977,78(1):237-243.
doi: 10.1016/0006-291X(77)91245-1
[9]   Nagel G, Ollig D, Fuhrmann M , et al. Channelrhodopsin-1:a light-gated proton channel in green algae. Science, 2002,296(5577):2395-2398.
doi: 10.1126/science.1072068 pmid: 12089443
[10]   Guru A, Post R J, Warden M R , et al. Making sense of optogenetics. International Journal of Neuropsychopharmacology, 2015, 18(11): pyv079.
[11]   Zemelman B V, Lee G A, Miesenböck G , et al. Selective photostimulation of genetically chARGed neurons. Neuron, 2002,33(1):15-22.
doi: 10.1016/S0896-6273(01)00574-8 pmid: 11779476
[12]   Lima S Q , Miesenbö ck G. Remote control of behavior through genetically targeted photostimulation of neurons. Cell, 2005,121(1):141-152.
doi: 10.1016/j.cell.2005.02.004 pmid: 15820685122
[13]   Zemelman B V, Nesnas N, Miesenbock G , et al. Photochemical gating of heterologous ion channels: remote control over genetically designated populations of neurons. Proceedings of the National Academy of Sciences, 2003,100(3):1352-1357.
doi: 10.1073/pnas.242738899
[14]   Matthew B, Katharine B, Dirk T , et al. Light-activated ion channels for remote control of neuronal firing. Nature Neuroscience, 2004,7(12):1381-1386.
doi: 10.1038/nn1356 pmid: 2788493
[15]   Aravanis A M, Wang L-P, Deisseroth K , et al. An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. Journal of Neural Engineering, 2007,4(3):S143-S156.
doi: 10.1088/1741-2560/4/3/S02 pmid: 17873414
[16]   Adamantidis A R, Zhang F, Deisseroth K , et al. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature, 2007,450(7168):420-424.
doi: 10.1038/nature06310 pmid: 17943086
[17]   Oesterhelt D, Stoeckenius W . Functions of a new photoreceptor membrane. Proceedings of the National Academy of Sciences, 1973,70(10):2853-2857.
doi: 10.1073/pnas.70.10.2853 pmid: 4517939
[18]   Nagel G, Szellas T, Bamberg E , et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proceedings of the National Academy of Sciences, 2003,100(24):13940-13945.
doi: 10.1073/pnas.1936192100 pmid: 14615590
[19]   Lin J Y, Lin M Z, Tsien R Y , et al. Characterization of engineered channelrhodopsin variants with improved properties and kinetics. Biophysical Journal, 2009,96(5):1803-1814.
doi: 10.1016/j.bpj.2008.11.034
[20]   Gunaydin L A, Yizhar O, Hegemann P , et al. Ultrafast optogenetic control. Nature Neuroscience, 2010,13(3):387-392.
doi: 10.1038/nn.2495
[21]   Kim C K, Adhikari A, Deisseroth K . Integration of optogenetics with complementary methodologies in systems neuroscience. Nature Reviews Neuroscience, 2017,18(4):222-235.
doi: 10.1038/nrn.2017.15 pmid: 28303019
[22]   Berndt A, Yizhar O, Deisseroth K , et al. Bi-stable neural state switches. Nature Neuroscience, 2009,12(2):229-234.
doi: 10.1038/nn.2247 pmid: 19079251
[23]   Bamann C, Gueta R, Bamberg E , et al. Structural guidance of the photocycle of channelrhodopsin-2 by an interhelical hydrogen bond. Biochemistry, 2010,49(2):267-278.
doi: 10.1021/bi901634p
[24]   Fenno L, Yizhar O, Deisseroth K . The development and application of optogenetics. Annual Review of Neuroscience, 2011,34(1):389-412.
doi: 10.1146/annurev-neuro-061010-113817
[25]   Zhang F, Prigge M, Deisseroth K , et al. Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri. Nature Neuroscience, 2008,11(6):631-633.
doi: 10.1038/nn.2120 pmid: 2692303
[26]   Lin J Y, Knutsen P M, Tsien R Y , et al. ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nature Neuroscience, 2013,16(10):1499-1508.
doi: 10.1038/nn.3502 pmid: 23995068
[27]   Klapoetke N C, Murata Y, Boyden E S , et al. Independent optical excitation of distinct neural populations. Nature Methods, 2014,11(3):338-346.
doi: 10.1038/nmeth.2836 pmid: 25317449
[28]   Han X, Boyden E S . Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution. PLoS ONE, 2007,2(3):e299.
doi: 10.1371/journal.pone.0000299 pmid: 17375185
[29]   Gradinaru V, Thompson K R , Deisseroth K. eNpHR: a natronomonas halorhodopsin enhanced for optogenetic applications. Brain Cell Biology, 2008,36(1-4):129-139.
doi: 10.1007/s11068-008-9027-6 pmid: 18677566
[30]   Ferenczi E, Deisseroth K . When the electricity (and the lights) go out: Transient changes in excitability. Nature Neuroscience, 2012,15(8):1058-1060.
doi: 10.1038/nn.3172
[31]   Chow B Y, Han X, Boyden E S , et al. High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature, 2010,463(7277):98-102.
doi: 10.1038/nature08652
[32]   Gradinaru V, Zhang F, Deisseroth K , et al. Molecular and cellular approaches for diversifying and extending optogenetics. Cell, 2010,141(1):154-165.
doi: 10.1016/j.cell.2010.02.037
[33]   Han X, Chow B Y, Boyden E S , et al. A high-light sensitivity optical neural silencer: development and application to optogenetic control of non-human primate cortex. Frontiers in Systems Neuroscience, 2011,5:18.
[34]   Chuong A S, Miri M L, Boyden E S , et al. Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nature Neuroscience, 2014,17(8):1123-1129.
doi: 10.1038/nn.3752
[35]   Kato H E , Zhang , Nureki O , et al. Crystal structure of the channel rhodopsin light-gated cation channel. Nature, 2012,482(7385):369-374.
doi: 10.1038/nature10870
[36]   Berndt A, Lee S Y, Deisseroth K , et al. Structural foundations of optogenetics: Determinants of channel rhodopsin ion selectivity. Proceedings of the National Academy of Sciences, 2016,113(4):822-829.
doi: 10.1073/pnas.1523341113 pmid: 26699459
[37]   Rost B R, Schneider F, Rosenmund C , et al. Optogenetic acidification of synaptic vesicles and lysosomes. Nature Neuroscience, 2015,18(12):1845-1852.
doi: 10.1038/nn.4161 pmid: 4869830
[38]   Valluru L, Xu J, Swanson G T , et al, . Ligand binding is a critical requirement for plasma membrane expression of heteromeric kainate receptors. The Journal of Biological Chemistry, 2005,280(7):6085-6093.
doi: 10.1074/jbc.M411549200 pmid: 15583001
[39]   Suzuki A, de la Pompa J L, Mak T W , et al. High cancer susceptibility and embryonic lethality associated with mutation of the PTEN tumor suppressor gene in mice. Current Biology, 1998,8(21):1169-1178.
doi: 10.1016/S0960-9822(07)00488-5 pmid: 9799734
[40]   Zhu P, Narita Y, Friedrich R W , et al. Optogenetic dissection of neuronal circuits in zebrafish using viral gene transfer and the Tet system. Frontiers in Neural Circuits, 2009,3(1):21-22.
doi: 10.3389/neuro.04.021.2009
[41]   Jiang W, Hua R, Zhang C , et al. An optimized method for high-titer lentivirus preparations without ultracentrifugation. Scientific Reports, 2015,5(1):13875.
doi: 10.1038/srep13875
[42]   Wold W S M, Toth K . Adenovirus vectors for gene therapy, vaccination and cancer gene therapy. Current Gene Therapy, 2013,13(6):421-33.
doi: 10.2174/1566523213666131125095046 pmid: 24279313
[43]   Neve R L, Lim F . Generation of high-titer defective HSV-1 vectors. Current Protocols in Neuroscience, 2013, doi: 10.1002/0471142301.ns0413s62.
doi: 10.1002/0471142301.ns0413s62
[44]   Mattis J, Brill J, Huguenard J R , et al. Frequency-dependent, cell type-divergent signaling in the hippocamposeptal projection. Journal of Neuroscience, 2014,34(35):11769-11780.
doi: 10.1523/JNEUROSCI.5188-13.2014 pmid: 25164672
[45]   Lammel S, Steinberg E, Malenka R C , et al. Diversity of transgenic mouse models for selective targeting of midbrain dopamine neurons. Neuron, 2015,85(2):429-438.
doi: 10.1016/j.neuron.2014.12.036 pmid: 25611513
[46]   Fenno L E, Mattis J, Deisseroth K , et al. Targeting cells with single vectors using multiple-feature Boolean logic. Nature Methods, 2014,11(7):763-772.
doi: 10.1038/nmeth.2996 pmid: 24908100
[47]   Jefferis G, Livet J . Sparse and combinatorial neuron labelling. Current Opinion in Neurobiology, 2012,22(1):101-110.
doi: 10.1016/j.conb.2011.09.010 pmid: 22030345
[48]   Soudais C, Laplace C, Kissa K , et al. Preferential transduction of neurons by canine adeno virus vectors and their efficient retrograde transport in vivo. Faseb Journal Official Publication of the Federation of American Societies for Experimental Biology, 2001,15(12):2283.
doi: 10.1096/fj.01-0321fje pmid: 11511531
[49]   Schwarz L A, Miyamichi K, Luo L , et al. Viral-genetic tracing of the input-output organization of a central noradrenaline circuit. Nature, 2015,524(7563):88-92.
doi: 10.1038/nature14600 pmid: 26131933
[50]   Reardon T R, Murray A J, Losonczy A , et al. Rabies virus CVS-N2cδG strain enhances retrograde synaptic transfer and neuronal viability. Neuron, 2016,89(4):711-724.
doi: 10.1016/j.neuron.2016.01.004 pmid: 26804990
[51]   Enquist L W . Exploiting circuit-specific spread of pseudorabies virus in the central nervous system: insights to pathogenesis and circuit tracers. The Journal of Infectious Diseases, 2002, 186,Suppl(s2):S209-S214.
doi: 10.1086/344278 pmid: 12424699
[52]   Lo L, Anderson D J . A cre-dependent, anterograde transsynaptic viral tracer for mapping output pathways of genetically marked neurons. Neuron, 2011,72(6):938-950.
doi: 10.1016/j.neuron.2011.12.002 pmid: 22196330
[53]   McGovern A E, Davis N, Mazzone S B , et al. Transneuronal tracing of airways-related sensory circuitry using herpes simplex virus 1, strain H129. Neuroscience, 2012,207:148-166.
doi: 10.1016/j.neuroscience.2012.01.029 pmid: 22306285
[54]   Zingg B, Chou X, Zhang L , et al. AAV-mediated anterograde transsynaptic tagging: mapping corticocollicular input-defined neural pathways for defense behaviors. Neuron, 2017,93(1):33-47.
doi: 10.1016/j.neuron.2016.11.045 pmid: 27989459
[55]   Lammel S, Tye K M, Warden M R . Progress in understanding mood disorders: optogenetic dissection of neural circuits. Genes, Brain and Behavior, 2014,13(1):38-51.
[56]   Yaroslavsky A N, Schulze P C, Schwarzmaier H J , et al. Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range. Physics in Medicine and Biology. 2002,47(12):2059-2073.
[57]   Zorzos A N, Scholvin J, Fonstad C G , et al. Three-dimensional multi-wave guide probe array for light delivery to distributed brain circuits. Optics Letters, 2012,37(23):4841.
doi: 10.1364/OL.37.004841 pmid: 23202064
[58]   Abaya T V F, Blair S, Solzbacher F , et al. A 3D glass optrode array for optical neural stimulation. Biomedical Optics Express, 2012,3(12):3087.
doi: 10.1364/BOE.3.003087 pmid: 23243561
[59]   Leonardo S, Marco P, Andrea D P , et al. Optical fiber technologies for in-vivo light delivery and optogenetics. International Conference on Transparent Optical Networks IEEE, 2015,DOI: 10.1109/ICTON.2015.7193312.
doi: 10.1109/ICTON.2015.7193312
[60]   Royer S , Zemelman B V. Magee J C , et al. Multi-array silicon probes with integrated optical fibers: light-assisted perturbation and recording of local neural circuits in the behaving animal. European Journal of Neuroscience, 2010,31(12):2279-2291.
doi: 10.1111/j.1460-9568.2010.07250.x pmid: 20529127
[61]   Lee J H, Durand R, Deisseroth K , et al. Global and local fMRI signals driven by neurons defined optogenetically by type and wiring. Nature, 2010,465(7299):788-792.
doi: 10.1038/nature09108
[62]   Shemesh O A, Tanese D, Zampini V , et al. Temporally precise single-cell-resolution optogenetics. Nature Neuroscience, 2017,20(12):1796-1806.
doi: 10.1038/s41593-017-0018-8 pmid: 29184208
[63]   Cho K A, Sohal V S . Optogenetic approaches for investigating neural pathways implicated in schizophrenia and related disorders. Human Molecular Genetics, 2014,23(R1):R64-R68.
doi: 10.1093/hmg/ddu225
[64]   Nyns E C A, Kip A, Pijnappels D A , et al. Optogenetic termination of ventricular arrhythmias in the whole heart: towards biological cardiac rhythm management. European Heart Journal, 2017,38(27):2132-2136.
doi: 10.1093/eurheartj/ehw574 pmid: 28011703
[65]   Bruegmann T, Van T, Sasse P , et al. Optogenetic control of contractile function in skeletal muscle. Nature Communications, 2015,6(1):7153.
doi: 10.1038/ncomms8153
[66]   Häusser M . Optogenetics: The age of light. Nature Methods, 2014. 11(10):1012-1014.
doi: 10.1038/nmeth.3111
[67]   Kravitz A V, Bonci A . Optogenetics, physiology, and emotions. Frontiers in Behavioral Neuroscience, 2013,7(4):169.
[1] MA Ning,WANG Han-jie. Advances of Optogenetics in the Regulation of Bacterial Production[J]. China Biotechnology, 2021, 41(9): 101-109.
[2] SUN Yao,QIAO Meng-wei,LIU Shi-yu,GONG Dian-liang,SONG Jin-zhu. Research Progress on the Inhibitory Effect of Lactobacillus on Pathogenic Pseudomonas[J]. China Biotechnology, 2021, 41(8): 103-109.
[3] FAN Yue-lei,WANG Yue,WANG Heng-zhe,LI Dan-dan,MAO Kai-yun. Research Progress of in Vitro Diagnostic Technologies for SARS-CoV-2[J]. China Biotechnology, 2021, 41(2/3): 150-161.
[4] YANG Xi,LUAN Yu-shi. Preliminary Study of Sly-miR399 in Tomato Resistance to Late Blight[J]. China Biotechnology, 2021, 41(11): 23-31.
[5] Jian YAN,Lu-qiang JIA,Jian DING,Zhong-ping SHI. Enhancing pIFN-α Production by Pichia pastoris via Periodic Methanol Induction Control[J]. China Biotechnology, 2019, 39(6): 32-40.
[6] Wen-jie CAO,Xiang-yuan XIONG,Yan-chun GONG,Zi-ling LI,Yu-ping LI. The Application of Polymersomes in Drug Delivery System[J]. China Biotechnology, 2019, 39(6): 62-72.
[7] LIU Guo-fang,LIU Xiao-zhi,GAO Jian,WANG Zhi-ming. Effects of Host Cell Residual Proteins on the Quality and Their Quality Control of Monoclonal Antibody[J]. China Biotechnology, 2019, 39(10): 105-110.
[8] Ya-nan YANG,Chao SUN,Hao-lin CUI,Xin ZHAO. Effect of Mutation of M145F / F146M on the Photocycle of Photoreceptors Bacteriorhodopsin and Archaerhodopsin 4[J]. China Biotechnology, 2019, 39(1): 21-30.
[9] Sai-bao LIU,Ya-fang LI,Hui WANG,Wei WANG,Duo-liang RAN,Hong-yan CHEN,Qing-wen MENG. Construction of Influenza Virus High-producing Cell Line MDCK-Tpl2 -/- with CRISPR / Cas9[J]. China Biotechnology, 2019, 39(1): 46-54.
[10] Gong CHENG,Si-ming JIAO,Li-shi REN,Cui FENG,Yu-guang DU. Preparation and Composition Analysis of Chitooligosaccharides with Low Degree of Deacetylation by Hydrolysis of Bacillus subtilis Chitosanase[J]. China Biotechnology, 2018, 38(9): 19-26.
[11] Juan-juan QU,Xiao-bei ZHAN,Hong-tao ZHANG,Xian-chao ZHOU,Yu-chen JIA,Xue-ying CAO. Identification of Cyclic β-1,2-glucan Produced under pH Control[J]. China Biotechnology, 2018, 38(6): 43-51.
[12] Ya-chao FAN,Lin ZHANG,Xiao-shu LI,Peng-xiang WANG,Xin-wu YAO,Kai QIAO. Study on the Fermentation of 2,3-Butanediol by Klebsiella pneumoniae CICC10011[J]. China Biotechnology, 2018, 38(2): 68-74.
[13] WANG Juan, GAO Yu-jiao, SUN Chao, ZHAO Xin. Effect of D97N Mutation on Proton Transport and Energy Conversion in the Photoreceptor Archaerhodopsin 4[J]. China Biotechnology, 2017, 37(9): 23-30.
[14] WU Meng-ling, ZHOU Jia-wang, DU Jun. Development and Application of A Double Monoclonal Antibody Sandwich ELISA for the Assay of Nodal[J]. China Biotechnology, 2017, 37(3): 51-57.
[15] Jian-rong WU,Xing-qiao PENG,Xiao-bei ZHAN. Advance in Application of Polysialic Acid,a Non-GAGs, Non-immunogenic Biomaterial[J]. China Biotechnology, 2017, 37(12): 96-102.