Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2021, Vol. 41 Issue (11): 23-31    DOI: 10.13523/j.cb.2107013
    
Preliminary Study of Sly-miR399 in Tomato Resistance to Late Blight
YANG Xi,LUAN Yu-shi()
School of Bioengineering, Dalian University of Technology, Dalian 116024, China
Download: HTML   PDF(1044KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Background: Tomato (Solanum lycopersicum) is one of the most valuable fruits and vegetables widely cultivated. Late blight disease of tomato reduces the quality and yield of tomatoes. MicroRNAs (miRNAs) area class of endogenous non-coding RNAs, which are widely involved in post-transcriptional regulation of genes. Recent evidence suggests that miR399 family participates in the regulation of plant disease resistance. Objective: Investigate the effect of sly-miR399 in tomato to late blight. Methods: The overexpressing and silencing vectors of sly-miR399 is constructed and transiently expressed in tomato leaves by the Agrobacterium-mediated method. Quantitative real-time PCR (qRT-PCR) is used to detect the related genes expression level. Trypan blue staining is used to analyze the lesion condition of tomato leaves with transient overexpressing (TO) and silencing (TS) sly-miR399. Results: Transient overexpressing sly-miR399 reduced the expression of its target gene UBC24 by 1.5 times and increased the expression of pathogenesis related proteins (PRs) SlPR1, SlPR2, SlPR3 and SlPR5 by 3.6 times, 2.2 times 2.3 times and 6.4 times, respectively. It increased the expression of JA related genes SlJA1, SlLOX1 and SlLOX2 by 1.3 times, 2.5 times and 1.5 times, respectively and reduced the expression of JA transcription repressor SlJAZ1 by 50%. After infection, the relative diseased area on TO leaves was reduced significantly. Transient silencing sly-miR399 increased the expression of its target gene by 1.8 times and reduced the expressions of PRs genes by 65%, 82%, 52% and 80%, and it decreased the expression of SlJA1, SlLOX1 and SlLOX2 by 84%, 50% and 65%,respectively and increased the expression of SlJAZ1 by 1.8 times. After infection, the relative diseased area on TS leaves increased significantly. Conclusion: sly-miR399 plays a positive regulatory role in tomato resistance to late blight.



Key wordsTomato      Late blight      miR399      Transient expression     
Received: 04 July 2021      Published: 01 December 2021
ZTFLH:  Q812  
Corresponding Authors: Yu-shi LUAN     E-mail: luanyush@dlut.edu.cn
Cite this article:

YANG Xi,LUAN Yu-shi. Preliminary Study of Sly-miR399 in Tomato Resistance to Late Blight. China Biotechnology, 2021, 41(11): 23-31.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2107013     OR     https://manu60.magtech.com.cn/biotech/Y2021/V41/I11/23

引物名称 正向引物序列(5'-3') 反向引物序列(5'-3')
sly-miR399 TTGAAAAGTGAAGGTCCTTG TTTACATATTCCATTTGGTG
UBC24 TTCTCCGCACAACCCTTCTA AATACCAATACTGCCAACGA
ARF17 AAAACTGCCTAATGGGCTTCT ATGGGCTACTGAGTCCAATCGT
F-box CTTTATTGGGCTTTATCTGC GTCCACGACACTTCTACTCC
NB-ARC TGGAGGAGGATGAGTCTTGG TTTGTTATGAGGCTCGGACA
SlPR1 CCAAGACTATCTTGCGGTTCA CGCTCTTGAGTTGGCATAGT
SlPR2 TCCAGGTAGAGACAGTGGTAAA CCTAAATATGTCGCGGTTGAGA
SlPR3 GAACGAGCTGGACAAGGTATT CGTTGTGGCATGATGGTTTATT
SlPR5 CCCAAACACCCTAGCTGAAT GGGCGAAAGTCATCGGTATATTA
SlJA1 GTGAGATCCGTGGAAAAAGAAGG CTTTTCTTCTCCCCAGCTTGT
SlJAZ1 GGAAAATCAAATGCCTAACCAG GGTACTTTTGCAGTTAGCCTA
SlLOX1 GTTGGACATGGTGACAAGAAAG GGCCAGAAGTTACCCAAACTA
SlLOX2 GATATAAGTGCGGAGAGTCGTG AAGCCTGGAGGTTGAGAATG
Actin TGTGTTGGACTCTGGTGATGGTGT ATCCAAACGAAGAATGGCATGCGG
Table 1 Primer and its sequences for qRT-PCR
Fig.1 Relative expression of sly-miR399 and its target genes upon P. infestans infection Hpi represents for hours post infection;Significant differences (P<0.05) are presented with different lowercase letters
Fig.2 The PCR product of sly-pre-miR399 M: DL2000 DNA marker; 1: PCR product of sly-pre-miR399
Fig.3 sly-miR399 overexpressing vector (a)OE-399 vector structure (b)Electrophoresis of PCR product of sly-pre-miR399 M:DL2000 DNA marker; 1: PCR products of sly-pre-miR399 using plasmids as templates
Fig.4 sly-miR399 silencing vector (a)Schematic diagram of sly-miR399 STTM vector (b)STTM-miR399 vector structure (c)Electrophoresis of PCR product of STTM-miR399 M:DL2000 DNA marker; 1: PCR products of sly-pre-miR399 using plasmids as templates
Fig.5 Expression levels of sly-miR399(a)and its target genes(b)in tomato leaves That transiently overexpressing sly-miR399, transiently silencing sly-miR399. EV: Empty vector; TO399: Transiently overexpressing sly-miR399; TS399: Transiently silencing sly-miR399. Significant differences (P<0.05) are presented with different lowercase letters
Fig.6 Expression levels of PRs gene in tomato leaves that transiently overexpressing sly-miR399, transiently silencing sly-miR399 EV: Empty vector; TO399: Transiently overexpressing sly-miR399; TS399: Transiently silencing sly-miR399. Significant differences (P<0.05) are presented with different lowercase letters
Fig.7 Expression levels of JA related genes in tomato leaves that transiently overexpressing sly-miR399, transiently silencing sly-miR399 EV: Empty vector; TO399: Transiently overexpressing sly-miR399; TS399: Transiently silencing sly-miR399. Significant differences (P<0.05) are presented with different lowercase letters
Fig.8 Lesion symptoms and trypan blue staining (a) and ratio of lesion area to leaf area (b) on leaves of transiently overexpressing sly-miR399, transiently silencing sly-miR399 and empty vector EV: Empty vector; TO399: Transiently overexpressing sly-miR399; TS399: Transiently silencing sly-miR399. Significant differences (P<0.05) are presented with different lowercase letters
[1]   Nowicki M, Foolad M R, Nowakowska M, et al. Potato and tomato late blight caused by Phytophthora infestans: an overview of pathology and resistance breeding. Plant Disease, 2012, 96(1):4-17.
doi: 10.1094/PDIS-05-11-0458 pmid: 30731850
[2]   Fry W E, Birch P R J, Judelson H S, et al. Five reasons to consider Phytophthora infestans a reemerging pathogen. Phytopathology, 2015, 105(7):966-981.
doi: 10.1094/PHYTO-01-15-0005-FI pmid: 25760519
[3]   董娟, 李佛生, 罗枫雪, 等. 水稻miRNA3026启动子及硫氧还蛋白基因OsTxnDC9的克隆与分析. 中国生物工程杂志, 2016, 36(1):29-37.
[3]   Dong J, Li F S, Luo F X, et al. Cloning and expression analysis of rice miRNA3026 promoter and thioredoxin OsTxnDC9. China Biotechnology, 2016, 36(1):29-37.
[4]   Ori N, Cohen A R, Etzioni A, et al. Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato. Nature Genetics, 2007, 39(6):787-791.
doi: 10.1038/ng2036
[5]   Karlova R, van Haarst J C, Maliepaard C, et al. Identification of microRNA targets in tomato fruit development using high-throughput sequencing and degradome analysis. Journal of Experimental Botany, 2013, 64(7):1863-1878.
doi: 10.1093/jxb/ert049
[6]   Yu N, Niu Q W, Ng K H, et al. The role of miR156/SPLs modules in Arabidopsis lateral root development. The Plant Journal, 2015, 83(4):673-685.
doi: 10.1111/tpj.12919 pmid: 26096676
[7]   耿昭, 刘建光, 赵贵元, 等. 植物miR394生物学功能研究进展. 植物生理学报, 2020, 56(10):2040-2046.
[7]   Geng Z, Liu J G, Zhao G Y, et al. Advances in biological functions of plant miR394. Plant Physiology Journal, 2020, 56(10):2040-2046.
[8]   Zhang B H. MicroRNA: a new target for improving plant tolerance to abiotic stress. Journal of Experimental Botany, 2015, 66(7):1749-1761.
doi: 10.1093/jxb/erv013
[9]   Su Y Y, Li H G, Wang Y L, et al. Poplar miR472a targeting NBS-LRRs is involved in effective defence against the necrotrophic fungus Cytospora chrysosperma. Journal of Experimental Botany, 2018, 69(22):5519-5530.
[10]   Li Y, Lu Y G, Shi Y, et al. Multiple rice MicroRNAs are involved in immunity against the blast fungus Magnaporthe oryzae. Plant Physiology, 2014, 164(2):1077-1092.
doi: 10.1104/pp.113.230052
[11]   Luan Y S, Cui J, Li J, et al. Effective enhancement of resistance to Phytophthora infestans by overexpression of miR172a and b in Solanum lycopersicum. Planta, 2018, 247(1):127-138.
doi: 10.1007/s00425-017-2773-x
[12]   Canto-Pastor A, Santos B A M C, Valli A A, et al. Enhanced resistance to bacterial and oomycete pathogens by short tandem target mimic RNAs in tomato. PNAS, 2019, 116(7):2755-2760.
doi: 10.1073/pnas.1814380116 pmid: 30679269
[13]   Hong Y H, Meng J, He X L, et al. Overexpression of miR482c in tomato induces enhanced susceptibility to late blight. Cells, 2019, 8(8):822.
doi: 10.3390/cells8080822
[14]   Baek D, Chun H, Kang S, et al. A role for Arabidopsis miR399f in salt, drought, and ABA signaling. Molecules and Cells, 2016, 39(2):111-118.
doi: 10.14348/molcells.2016.2188
[15]   孙佃臣, 沙爱华, 单志慧, 等. 拟南芥miR399耐低磷胁迫研究进展. 中国生物工程杂志, 2011, 31(11):102-106.
[15]   Sun D C, Sha A H, Shan Z H, et al. Advances of miR399 in resistance of low-phosphate stress in Arabidopsis thaliana. China Biotechnology, 2011, 31(11):102-106.
[16]   Kim W, Ahn H J, Chiou T J, et al. The role of the miR399-PHO2 module in the regulation of flowering time in response to different ambient temperatures in Arabidopsis thaliana. Molecules and Cells, 2011, 32(1):83-88.
[17]   Gu M, Xu K, Chen A Q, et al. Expression analysis suggests potential roles of microRNAs for phosphate and arbuscular mycorrhizal signaling in Solanum lycopersicum. Physiologia Plantarum, 2010, 138(2):226-237.
doi: 10.1111/ppl.2010.138.issue-2
[18]   李琳琳, 金华, 刘斯超, 等. 番茄茉莉酸缺失突变体灰霉菌侵染响应miRNA及其表达分析. 园艺学报, 2020, 47(7):1323-1334.
[18]   Li L L, Jin H, Liu S C, et al. Expressied analysis of miRNA with tomato JA deficient mutant reponse to Botrytis cinerea infection. Acta Horticulturae Sinica, 2020, 47(7):1323-1334.
[19]   Luan Y S, Cui J, Zhai J M, et al. High-throughput sequencing reveals differential expression of miRNAs in tomato inoculated with Phytophthora infestans. Planta, 2015, 241(6):1405-1416.
doi: 10.1007/s00425-015-2267-7
[20]   Campos-Soriano L, Bundó M, Bach-Pages M, et al. Phosphate excess increases susceptibility to pathogen infection in rice. Molecular Plant Pathology, 2020, 21(4):555-570.
doi: 10.1111/mpp.12916 pmid: 32072745
[21]   Zhao H W, Sun R B, Albrecht U, et al. Small RNA profiling reveals phosphorus deficiency as a contributing factor in symptom expression for Citrus huanglongbing disease. Molecular Plant, 2013, 6(2):301-310.
doi: 10.1093/mp/sst002
[22]   王猛. 玉米小斑病菌O小种分化鉴定与非编码RNA效应物研究. 上海: 上海交通大学, 2018.
[22]   Wang M. Identification of Cochliobolus heterostrophus race O differentiation and the noncoding RNA effector exploration. Shanghai: Shanghai Jiaotong University, 2018.
[23]   Yu C, Chen H M, Tian F, et al. Identification of differentially-expressed genes of rice in overlapping responses to bacterial infection by Xanthomonas oryzae pv. oryzae and nitrogen deficiency. Journal of Integrative Agriculture, 2015, 14(5):888-899.
doi: 10.1016/S2095-3119(14)60860-1
[24]   Thines B, Katsir L, Melotto M, et al. JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature, 2007, 448(7154):661-665.
doi: 10.1038/nature05960
[25]   Wang S, Li Q, Zhao L, et al. Arabidopsis UBC22, an E2 able to catalyze lysine-11 specific ubiquitin linkage formation, has multiple functions in plant growth and immunity. Plant Science, 2020, 297:110520.
doi: 10.1016/j.plantsci.2020.110520
[26]   Chung E, Cho C W, So H A, et al. Overexpression of VrUBC1, a mung bean E2 ubiquitin-conjugating enzyme, enhances osmotic stress tolerance in Arabidopsis. PLoS One, 2013, 8(6):e66056.
doi: 10.1371/journal.pone.0066056
[27]   Niderman T, Genetet I, Bruyere T, et al. Pathogenesis-related PR-1 proteins are antifungal: isolation and characterization of three 14-kilodalton proteins of tomato and of a basic PR-1 of tobacco with inhibitory activity against Phytophthora infestans. Plant Physiology, 1995, 108(1):17-27.
pmid: 7784503
[28]   张阿玲. 毛花猕猴桃PR2蛋白基因的克隆及其对猕猴桃溃疡病菌的响应. 杨陵: 西北农林科技大学, 2018.
[28]   Zhang A L. Cloning and its response to Pseudomonas syringae pv.actinidiae of PR2 protein gene in Actinidia eriantha Benth. Yangling: Northwest A & F University, 2018.
[29]   Liu D Q, He X, Li W X, et al. Molecular cloning of a thaumatin-like protein gene from Pyrus pyrifolia and overexpression of this gene in tobacco increased resistance to pathogenic fungi. Plant Cell, Tissue and Organ Culture (PCTOC), 2012, 111(1):29-39.
doi: 10.1007/s11240-012-0167-0
[30]   Hou X X, Cui J, Liu W W, et al. LncRNA39026 enhances tomato resistance to Phytophthora infestans by decoying miR168a and inducing PR gene expression. Phytopathology, 2020, 110(4):873-880.
doi: 10.1094/PHYTO-12-19-0445-R
[1] Jing-li WANG,Zhen-zhen DING,Hui LIU,Yan-ting TANG. Development and Application of the Binding Assay for Tomato Spotted Wilt Virus Nucleoprotein Using Fluorescent Polarization Technology[J]. China Biotechnology, 2018, 38(11): 18-24.
[2] LUO Feng-xue, LI Fo-sheng, YAO Min, XU Ying. The Cloning and Transient Expression Analysis of Promoter of OsHAK26 from Oryza sativa[J]. China Biotechnology, 2017, 37(2): 33-39.
[3] REN Shuang, ZHU Hong-liang. Establishment of Taqman Quantitative PCR System to Estimate Copy Numbers of Exogenous Transgene in Genome Edited Tomato[J]. China Biotechnology, 2017, 37(10): 72-80.
[4] DONG Juan, LI Fo-sheng, LUO Feng-Xue, XIA Fang, ZHU Shu-hua, TANG Lin. Cloning and Expression Analysis of Rice miRNA3026 Promoter and Thioredoxin OsTxnDC9[J]. China Biotechnology, 2016, 36(1): 29-37.
[5] WANG Xiao-lin, CAO Dong-yan, DONG Jin, TIAN Hui-qin, ZHU Ben-zhong. Progress in Researches of Ripening Related Mutants in Tomato Fruit[J]. China Biotechnology, 2016, 36(1): 95-100.
[6] HAN Lan, JU Lin-fang, NIU Yi-ding, WANG Ying-chun, HASI Agula. Optimization, Synthesis and Transient Expression of Nattokinase Gene in Tobacco (Nicotiana tabacum L.) Leaves[J]. China Biotechnology, 2015, 35(9): 14-20.
[7] XIE Wen-qi, MA San-mei, WANG Yong-fei, SUN Xiao-wu. Status, Problems and Strategies of Transgenic Tomatoes for Oral Vaccine[J]. China Biotechnology, 2014, 34(10): 94-100.
[8] ZHAO Yan, SHA Wei, ZHANG Mei-juan, YANG Xiao-jie, FAN Zhen-yu, WANG Yan-mei. Cloning and Activity Analysis of Soybean FAD2-1B Promoter[J]. China Biotechnology, 2013, 33(4): 80-84.
[9] SHEN Qiu-shuo, CHEN Feng, YE Qing, LI Tao, CHEN Xin-bo, ZHANG Xian-wen. Cloning and Transient Expression of the Three Stress-related Rice Promoters[J]. China Biotechnology, 2012, 32(11): 29-34.
[10] SHEN Qiu-shuo, CHEN Feng, YE Qing, LI Tao, CHEN Xin-bo, ZHANG Xian-wen. Cloning and Transient Expression of the Three Stress-related Rice Promoters[J]. China Biotechnology, 2012, 32(11): 29-34.
[11] LI Hao, CHEN Zhong, LI Ying, WANG Jia, AN Xin-min. Cloning and Transient Expression Analysis of PtLFY Promoter from Populus tomentosa[J]. China Biotechnology, 2012, 32(04): 41-46.
[12] CUI Dong-qing, YE Mei-xia, LIU Jun-mei, LI Hao, ZHANG Zhi-yi, AN Xin-min. Cloning and Transient Expression Analysis of PtSEP2 Promoter from Populus tomentosa[J]. China Biotechnology, 2011, 31(5): 42-47.
[13] SUN Dian-chen, SHA Ai-hua, SHAN Zhi-hui, ZHOU Rong, ZHOU Xin-an. Advances of miR399 in Resistance of Low-phosphate Stress in Arabidopsis Thaliana[J]. China Biotechnology, 2011, 31(11): 102-106.
[14] . Cloning and Transient Expression Analysis of PtSEP2 Promoter from Populus tomentosa[J]. China Biotechnology, 2011, 31(05): 0-0.
[15] JIANG Ying, LIU Xiu-Meng, DU Mei-Li, SHU Hai-Lin, LI Wei, LI Hai-Yan, LI Jiao-Kun. Plant Expression System Progress of Recombinant Proteins[J]. China Biotechnology, 2010, 30(02): 109-114.