Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (2): 68-74    DOI: 10.13523/j.cb.20180210
Orginal Article     
Study on the Fermentation of 2,3-Butanediol by Klebsiella pneumoniae CICC10011
Ya-chao FAN(),Lin ZHANG,Xiao-shu LI,Peng-xiang WANG,Xin-wu YAO,Kai QIAO
Dalian Research Institute of Petroleum and Petrochemicals, SINOPEC, Dalian 116000, China
Download: HTML   PDF(1492KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

2,3-butanediol is used widely. As a potential platform compound, it can be used to replace the traditional platforms—four carbon hydrocarbons. With the requirements of energy security and environmental protection, biological refining 2,3-butanediol gets the substantial interest of researchers, which has obvious advantages over chemical method. Therefore, it is important to develop the suitable fermentation process of 2,3-butanediol. With the strain Klebsiella pneumoniae CICC10011, a preliminary study on the properties of 2,3-butanediol fermentation was carried out. By changing conditions, researchers studied the effects of pH, air flow rate and rotating speed on the metabolism of the stain. In this way, the better fermentation conditions for producing 2,3-butanediol were got. In the process, pH, air flow rate and rotating speed were controlled through two-stages. In the first 12h, kept the pH 6.8,the air flow rate 1.0vvm and the rotating speed 400r/min. Then, changed them to 6.0, 0.5vvm and 300r/min, respectively.



Key words2      3-butanediol      Process of fermentation      Two-stages controlling     
Received: 04 September 2017      Published: 21 March 2018
ZTFLH:  TQ923  
Cite this article:

Ya-chao FAN,Lin ZHANG,Xiao-shu LI,Peng-xiang WANG,Xin-wu YAO,Kai QIAO. Study on the Fermentation of 2,3-Butanediol by Klebsiella pneumoniae CICC10011. China Biotechnology, 2018, 38(2): 68-74.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20180210     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I2/68

Fig.1 Metabolism of Klebsiella pneumoniae CICC10011 in 15L fermentor(a) Time-course of concentration of residual glucose and target product, productivity and dry weight under pH 6.8, aeration 1.0 vvm, agitation 200r/min (b) Time-course of concentration of by-products under pH 6.8, aeration 1.0 vvm, agitation 200 r/min
Fig.2 Metabolism of Klebsiella pneumoniae CICC10011 in 5L fermentor, two-stage regulation of pH(a) Time-course of concentration of residual glucose and target product, productivity and dry weight under pH 6.8 to 6.5, aeration 1.0 vvm, agitation 200r/min (b) Time-course of concentration of by-products under pH 6.8 to 6.5, aeration 1.0 vvm, agitation 200 r/min
Fig.3 Metabolism of Klebsiella pneumoniae CICC10011 in 15L fermentor, two-stage regulation of pH(a) Time-course of concentration of residual glucose and target product, productivity and dry weight under pH 6.8 to 6.5, aeration 1.0 vvm, agitation 200r/min (b) Time-course of concentration of by-products under pH 6.8 to 6.5, aeration 1.0 vvm, agitation 200 r/min
Fig.4 Metabolism of Klebsiella pneumoniae CICC10011 in 15L fermentor, two-stage regulation of pH and aeration(a) Time-course of concentration of residual glucose and target product, productivity and dry weight under pH 6.8 to 6.5, aeration 1.0 vvm to 0.5vvm, agitation 200r/min (b) Time-course of concentration of by-products under pH 6.8 to 6.5, aeration 1.0 vvm to 0.5vvm, agitation 200 r/min
Fig.5 Metabolism of Klebsiella pneumoniae CICC10011 in 15L fermentor, two-stage regulation of pH and aerationTime-course of concentration of residual glucose and target product, productivity and dry weight under pH 6.8 to 6.5, aeration 0.5 vvm to 0.2vvm, agitation 200r/min (b) Time-course of concentration of by-products under pH 6.8 to 6.5, aeration 0.5 vvm to 0.2vvm, agitation 200 r/min
Fig.6 Metabolism of Klebsiella pneumoniae CICC10011 in 15L fermentor, two-stage regulation of pH and aeration(a) Time-course of concentration of residual glucose and target product, productivity and dry weight under pH 6.8 to 6.0, aeration 0.5 vvm to 0.2vvm, agitation 200r/min (b) Time-course of concentration of by-products under pH 6.8 to 6.0, aeration 0.5 vvm to 0.2vvm, agitation 200 r/min
Fig.7 Metabolism of Klebsiella pneumoniae CICC10011 in 15L fermentor,two-stage regulation of pH, aeration and agitation(a) Time-course of concentration of residual glucose and target product, productivity and dry weight under pH 6.8 to 6.0, aeration 1.0 vvm to 0.5vvm, agitation 400r/min to 300r/min (b) Time-course of concentration of by-products under pH 6.8 to 6.0, aeration 1.0 vvm to 0.5vvm, agitation 400 r/min to 300r/min
[1]   戴建英, 孙亚琴, 孙丽慧 , 等. 生物基化学品2,3-丁二醇的研究进展. 过程工程学报, 2010,10(1):200-208.
[1]   Dai J Y, Sun Y Q, Sun L H , et al. Research progress of bio-based chemical 2,3-butanediol The Chinese Journal of Process Engineering, 2010,10(1):200-208.
[2]   纪晓俊, 聂志奎, 黎志勇 , 等. 生物制造2,3-丁二醇:回顾与展望. 化学进展, 2010,22(12):2450-2461.
[2]   Jiao X J, Nie Z K, Li Z Y , et al. Biotechnological production of 2,3-Butanediol Process in Chemistry, 2010,22(12):2450-2461.
[3]   宋源朝, 许赟珍, 李强 , 等. 2,3-丁二醇的发酵生产. 化工进展, 2011,30(5):1069-1077.
[3]   Song Y Q, Xu Y Z, Li Q , et al. Fermentation of bio-based product 2,3-butanediol Chemical Industry and Engineering Progress, 2011,30(5):1069-1077.
[4]   樊亚超, 张霖, 廖莎 , 等. 2,3-丁二醇分离提取工艺研究进展. 化工进展, 2016,35(8):2323-2328.
doi: 10.16085/j.issn.1000-6613.2016.08.03
[4]   Fan Y C, Zhang L, Liao S , et al. Progress on the separation of 2,3-butanediol Chemical Industry and Engineering Progress, 2016,35(8):2323-2328.
doi: 10.16085/j.issn.1000-6613.2016.08.03
[5]   张刚, 杨光, 李春 , 等. 生物法生产2,3-丁二醇研究进展. 中国生物工程杂志, 2008,28(6):133-140.
doi: 10.3969/j.issn.1671-8135.2008.06.024
[5]   Zhang G, Yang G, Li C , et al. Research progress of 2,3-butanediol by biological method China Biotechnology, 2008,28(8):133-140.
doi: 10.3969/j.issn.1671-8135.2008.06.024
[6]   Haren A, Walpole G S . 2,3-Butylene glycol fermentation by aerobacter aerogenes. Proc Royal Soc B, 1906,77:399-405.
doi: 10.1098/rspb.1906.0028
[7]   童颖佳, 邬文嘉, 彭辉 , 等. 微生物合成2,3-丁二醇的代谢工程. 化工学报, 2016,67(7):2656-2671.
doi: 10.11949/j.issn.0438-1157.20160209
[7]   Tong Y J, Wu W J, Peng H , et al. Metabolic engineering for efficient microbial production of 2,3-butanediol CIESC Journal, 2016,67(7):2656-2671.
doi: 10.11949/j.issn.0438-1157.20160209
[8]   Garg S K, Jain A . Fermentative production of 2,3-butanediol: A review. Bioresource Technol, 1995,51(3):103-109.
doi: 10.1002/bjs.6082
[9]   Tran A V, Chambers R P . The dehydration of fermentative 2,3-butanediol into methyl ethyl ketone. Biotechnol Bioent, 1987,29(3):343-351.
doi: 10.1002/bit.260290308 pmid: 18576423
[10]   Converti A, Perego P, Borghi A D . Effect of specific oxygen uptake rate on Enterobacter aerogenes energetics: carbon and reduction degree balances in batch cultivations. Biotechnol Bioeng, 2003,82(3):370-377.
doi: 10.1002/bit.10570 pmid: 12599264
[11]   韩宁宁, 肖冬光, 张翠英 , 等. 木糖发酵生产2,3-丁二醇条件的优化. 食品研究与开发, 2010,31(11):197-200.
[11]   Han N N, Xiao D G, Zhang C Y , et al. Optimization of fermentation conditions for 2,3-butanediol from xylose Food Research and Development, 2010,31(11):197-200.
[12]   杜军, 纪晓俊, 黄和 , 等. 产酸克雷伯氏杆菌发酵产2,3-丁二醇的培养基优化. 生物加工过程, 2009,7(1):34-38.
doi: 10.3969/j.issn.1672-3678.2009.01.007
[12]   Du J, Ji X J, Huang H , et al. Optimization of fermentation medium for production of 2,3-butanediol by Klebsiella oxytoca Chinese Journal of Bioprocess Engineering, 2009,7(1):34-38.
doi: 10.3969/j.issn.1672-3678.2009.01.007
[13]   Satoshi Fukuzaki, Yong-Jin Chang, Naomichi Nishio , et al. Characteristics of granular methanogenic sludge grown on lactate in a UASB eactor. Journal of Fermentation & Bioengineering, 1991,72(6):465-472.
doi: 10.1016/0922-338X(91)90056-M
[14]   Celinska E, Grajek W . Biotechnological production of 2,3-butanedion- current state and prospects. Biotechnol Adv, 2009,27(6):715-725.
doi: 10.1016/j.biotechadv.2009.05.002 pmid: 19442714
[1] ZHAO Xia,ZHU Zhe,ZU Yao. tbx2b Affects Atrioventricular Canal Development in Zebrafish[J]. China Biotechnology, 2021, 41(8): 1-7.
[2] CHEN Xiu-yue,ZHOU Wen-feng,HE Qing,SU Bing,ZOU Ya-wen. Preparation, Purification and Identification of Bacteriophage Qβ Virus-like Particles[J]. China Biotechnology, 2021, 41(7): 42-49.
[3] YUN Tao,GONG Yue,GU Peng,XU Bing-bing,LI Jin,ZHAO Xi-chen. Present Situation and Prospect of International S&T Cooperation between China and Countries Participating in the “Belt and Road” Initiative to Combat COVID-19[J]. China Biotechnology, 2021, 41(7): 110-121.
[4] CHEN Chen,HU Jin-chao,CAO Shan-shan,MEN Dong. The Development of Antigen Testing for SARS-CoV-2[J]. China Biotechnology, 2021, 41(6): 119-128.
[5] SHI Rui,YAN Jing-hua. Research Progress of Neutralizing Antibody Drugs against SARS-CoV-2[J]. China Biotechnology, 2021, 41(6): 129-135.
[6] OUYANG Qin,LI Yan-meng,XU An-jian,ZHOU Dong-hu,LI Zhen-kun,HUANG Jian. GTF2H2 Affects the Proliferation and Migration of Hep3B Hepatocellular Carcinoma Cells by Mediating AKT Signal Pathway[J]. China Biotechnology, 2021, 41(6): 4-12.
[7] TAO Shou-song,REN Guang-ming,YIN Rong-hua,YANG Xiao-ming,MA Wen-bing,GE Zhi-qiang. Knockdown of Deubiquitinase USP13 Inhibits the Proliferation of K562 Cells[J]. China Biotechnology, 2021, 41(5): 1-7.
[8] ZHANG Sai,WANG Gang,LIU Zhong-ming,LI Hui-jun,WANG Da-ming,QIAN Chun-gen. Development and Performance Evaluation of a Rapid Antigen Test for SARS-CoV-2[J]. China Biotechnology, 2021, 41(5): 27-34.
[9] CHEN Yu-qiong,TAN Wen-hua,LIU Hai-feng,CHEN Gen. Protective Effect of miR-29a on Lipopolysaccharide-induced Human Pulmonary Microvascular Endothelial Cells Injury by Targeting PTEN Expression[J]. China Biotechnology, 2021, 41(5): 8-16.
[10] DUAN Yang-yang,ZHANG Feng-ting,CHENG Jiang,SHI Jin,YANG Juan,LI Hai-ning. The Effect of SIRT2 on Apoptosis and Mitochondrial Function in Parkinson’s Disease Model Cells Induced by MPP+[J]. China Biotechnology, 2021, 41(4): 1-8.
[11] XU An-jian,LI Yan-meng,WU Shan-na,ZHANG Bei,YAO Jing-yi. PHP14 Plays a Role in Epithelial-Mesenchymal Transition of AML-12Cell Through Interaction with Vimentin[J]. China Biotechnology, 2021, 41(2/3): 1-6.
[12] FAN Yue-lei,WANG Yue,WANG Heng-zhe,LI Dan-dan,MAO Kai-yun. Research Progress of in Vitro Diagnostic Technologies for SARS-CoV-2[J]. China Biotechnology, 2021, 41(2/3): 150-161.
[13] CAI Run-ze,WANG Zheng-bo,CHEN Yong-chang. Research Progress of Mecp2 Affecting Metabolic Function in Rett Syndrome[J]. China Biotechnology, 2021, 41(2/3): 89-97.
[14] MAO Kai-yun,LI Rong,LI Dan-dan,ZHAO Ruo-chun,FAN Yue-lei,JIANG Hong-bo. Analysis of the Current Status of Global Bispecific Antibody Development[J]. China Biotechnology, 2021, 41(11): 110-118.
[15] FAN Yan,YANG Miao,XUE Song. High-throughput Screening of Benzoate Decarboxylase for High-efficiency Fixation of CO2 Based on Spectroscopy-image Grayscale Method[J]. China Biotechnology, 2021, 41(11): 55-63.