Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (9): 19-26    DOI: 10.13523/j.cb.20180903
Orginal Article     
Preparation and Composition Analysis of Chitooligosaccharides with Low Degree of Deacetylation by Hydrolysis of Bacillus subtilis Chitosanase
Gong CHENG,Si-ming JIAO,Li-shi REN,Cui FENG,Yu-guang DU()
State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
Download: HTML   PDF(1111KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Chitosanase encoding gene of Bacillus subtilis 168 was optimized, synthesized and secretorily expressed in Pichia pastoris. The protein concentration of the expressed product reached 0.30mg/ml. The optimum pH and temperature of the expressed chitosanase was 5.6 and 55℃, respectively, and enzymatic activity reached 84.54U/ml. The chitosanase was continuously thermostable at 50℃. The low deacetylated chitosan was hydrolyzed by this enzyme and the composition of these products were analyzed through utra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-QTOF MS). The results showed that these hydrolysates contained at least 37 different kinds of chitooligosaccharides with degree of polymerization of 2-18 and different degree of deacetylation. In summary, chitooligosaccharides with low degree of deacetylation were prepared through Bacillus subtilis 168 chitosanase expressed in Pichia pastoris and its composition analyzed, which can provide a reference for the study of the relationship between the structure and function of chitooligosaccharides.



Key wordsBacillus subtilis      Chitosanase      Pichia pastoris      Chitooligosaccharides      Ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry     
Received: 17 May 2018      Published: 12 October 2018
Corresponding Authors: Yu-guang DU     E-mail: ygdu@ipe.ac.cn
Cite this article:

Gong CHENG,Si-ming JIAO,Li-shi REN,Cui FENG,Yu-guang DU. Preparation and Composition Analysis of Chitooligosaccharides with Low Degree of Deacetylation by Hydrolysis of Bacillus subtilis Chitosanase. China Biotechnology, 2018, 38(9): 19-26.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20180903     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I9/19

Fig.1 Electrophoresis map of chitosanase gene bscsn recombinant plasmid restriction enzyme hydrolysates (a) and protein expression products (b)(a) M1: DNA marker; E1: Plasmid pGBG1-bscsn digested with XhoⅠand NotⅠ; E2: Plasmid pGBG1-bscsn digested with BglⅡ (b) P1: Protein marker; M2: Expressed protein BSCSN
Fig.2 Effect of pH (a) and temperature (b) on the activity of chitosanase BSCSN and its thermostability (c)
Fig.3 TIC(a) and mass spectrogram(b) of BSCSN hydrolysis products
Numbers Retention time
(min)
Determined
(m/z)
Theoretical
(m/z)
Predicted
components
DP DDA(%)
A1 9.65 341.4 341.1 [D2+H]+ 2 100
A2 9.65 544.6 544.2 [A1D2+H]+ 3 67
B1 15.31 502.6 502.2 [D3+H]+ 3 100
C1 17.30 705.8 705.3 [A1D3+H]+ 4 75
C2 17.30 909.0 908.4 [A2D3+H]+ 5 60
D1 20.76 663.7 663.3 [D4+H]+ 4 100
D2 20.76 866.9 866.4 [A1D4+H]+ 5 80
D3 20.76 1070.1 1069.4 [A2D4+H]+ 6 67
Numbers Retention time
(min)
Determined
(m/z)
Theoretical
(m/z)
Predicted
components
DP DDA(%)
E1 24.89 514.6 514.2 [A1D5+2H]2+ 6 83
E2 24.89 616.2 615.8 [A2D5+2H]2+ 7 71
E3 24.89 717.8 717.3 [A3D5+2H]2+ 8 63
E4 24.89 819.4 818.8 [A4D5+2H]2+ 9 56
F1 27.91 1189.3 1188.5 [A1D6+H]+ 7 86
F2 27.91 696.8 696.3 [A2D6+2H]2+ 8 75
F3 27.91 798.4 797.8 [A3D6+2H]2+ 9 67
F4 27.91 900.0 899.4 [A4D6+2H]2+ 10 60
F5 27.91 1001.6 1000.9 [A5D6+2H]2+ 11 55
F6 27.91 1103.2 1102.4 [A6D6+2H]2+ 12 50
G1 30.08 777.4 776.8 [A2D7+2H]2+ 9 78
G2 30.08 879.0 878.4 [A3D7+2H]2+ 10 70
G3 30.08 980.6 979.9 [A4D7+2H]2+ 11 64
G4 30.08 1082.1 1081.4 [A5D7+2H]2+ 12 58
G5 30.08 1183.8 1183.0 [A6D7+2H]2+ 13 54
G6 30.08 1285.4 1284.5 [A7D7+2H]2+ 14 50
G7 30.08 1387.0 1386.1 [A8D7+2H]2+ 15 47
H1 31.56 640.0 639.6 [A3D8+3H]3+ 11 73
H2 31.56 707.8 707.3 [A4D8+3H]3+ 12 67
H3 31.56 775.5 775.0 [A5D8+3H]3+ 13 62
H4 31.56 843.3 842.7 [A6D8+3H]3+ 14 57
H5 31.56 911.0 910.4 [A7D8+3H]3+ 15 53
H6 31.56 978.7 978.1 [A8D8+3H]3+ 16 50
I1 32.69 761.5 761.0 [A4D9+3H]3+ 13 69
I2 32.69 829.3 828.7 [A5D9+3H]3+ 14 64
I3 32.69 897.0 896.4 [A6D9+3H]3+ 15 60
I4 32.69 964.7 964.1 [A7D9+3H]3+ 16 56
I5 32.69 1032.4 1031.8 [A8D9+3H]3+ 17 53
I6 32.69 1100.1 1099.4 [A9D9+3H]3+ 18 50
Table 1 Component identification of BSCSN hydrolysis products
[1]   Lodhi G, Kim Y S, Hwang J W , et al. Chitooligosaccharide and its derivatives: preparation and biological applications. Biomed Research International, 2014,2014(1):654913.
[2]   Zou P, Yang X, Wang J , et al. Advances in characterization and biological activities of chitosan and chitosan oligosaccharides. Food Chemistry, 2016,190:1174-1181.
doi: 10.1016/j.foodchem.2015.06.076
[3]   Azuma K, Osaki T, Minami S , et al. Anticancer and anti-inflammatory properties of chitin and chitosan oligosaccharides. Journal of Functional Biomaterials, 2015,6(1):33-49.
doi: 10.3390/jfb6010033
[4]   Shinya T, Nakagawa T, Kaku H , et al. Chitin-mediated plant-fungal interactions: catching, hiding and handshaking. Current Opinion in Plant Biology, 2015,26:64-71.
doi: 10.1016/j.pbi.2015.05.032
[5]   Je J Y, Kim S K . Chitooligosaccharides as potential nutraceuticals: production and bioactivities. Adv Food Nutr Res, 2012,65:321-336.
doi: 10.1016/B978-0-12-416003-3.00021-4
[6]   Li K, Xing R, Liu S , et al. Advances in preparation, analysis and biological activities of single chitooligosaccharides. Carbohydrate Polymers, 2016,139:178-190.
doi: 10.1016/j.carbpol.2015.12.016
[7]   Younes I, Rinaudo M . Chitin and chitosan preparation from marine sources. structure, properties and applications. Marine Drugs, 2015,13(3):1133-1174.
doi: 10.3390/md13031133
[8]   Jung W J, Park R D . Bioproduction of chitooligosaccharides: present and perspectives. Mar Drugs, 2014,12(11):5328-5356.
doi: 10.3390/md12115328
[9]   Tegl G, Ohlknecht C, Vielnascher R , et al. Cellobiohydrolases produce different oligosaccharides from chitosan. Biomacromolecules, 2016,17(6):2284-2292.
doi: 10.1021/acs.biomac.6b00547
[10]   Ranok A, Wongsantichon J, Robinson R C , et al. High yield production of monomer-free chitosan oligosaccharides by pepsin catalyzed hydrolysis of a high deacetylation degree chitosan. Carbohydr Res, 2007,342(18):2750-2756.
doi: 10.1016/j.carres.2007.08.023
[11]   Lee D X, Xia W S, Zhang J L . Enzymatic preparation of chitooligosaccharides by commercial lipase. Food Chemistry, 2008,111(2):291-295.
doi: 10.1016/j.foodchem.2008.03.054
[12]   中科荣信(苏州)生物科技有限公司. 一种里氏木霉几丁质酶及其制备方法和应用: 中国, 2017106305187. 2017-07-28[2018-05-15]. .
[12]   Zhongke Runxin (Suzhou) Biological Technology Co. Ltd. Preparation method and application of Trichoderma reesei chitinase:Chinese, 2017106305187. 2017-07-28[2018-05-15]. .
[13]   Borriss R, Danchin A, Harwood C R , et al. Bacillus subtilis, the model Gram-positive bacterium: 20 years of annotation refinement. Microb Biotechnol, 2018,11(1):3-17.
doi: 10.1111/1751-7915.13043
[14]   程功, 任立世, 焦思明 , 等. 纤维素酶制备低脱乙酰度壳寡糖及其组成分析. 食品科技, 2018,43(4):189-193.
[14]   Cheng G, Ren L S, Jiao S M , et al. Composition analysis and production of chito-oligosanccharides with low degree of deacetylation by cellulase. Food Sience and Technology, 2018,43(4):189-193.
[15]   Parro V , SanRoman M , Galindo I , et al. A 23 911 bp region of the Bacillus subtilis genome comprising genes located upstream and downstream of the lev operon. Microbiology, 1997,143:1321-1326.
doi: 10.1099/00221287-143-4-1321
[16]   Rivas L A, Parro V, Moreno-Paz M , et al. The Bacillus subtilis 168 csn gene encodes a chitosanase with similar properties to a streptomyces enzyme. Microbiology, 2000,146:2929-2936.
doi: 10.1099/00221287-146-11-2929
[17]   Pechsrichuang P, Yoohat K, Yamabhai M . Production of recombinant Bacillus subtilis chitosanase, suitable for biosynthesis of chitosan-oligosaccharides. Bioresour Technol, 2013,127:407-414.
doi: 10.1016/j.biortech.2012.09.130
[18]   Kang L X, Chen X M, Fu L , et al. Recombinant expression of chitosanase from Bacillus subtilis HD145 in Pichia pastoris. Carbohydr Res, 2012,352:37-43.
doi: 10.1016/j.carres.2012.01.025
[19]   Feng J, Zhao L, Yu Q . Receptor-mediated stimulatory effect of oligochitosan in macrophages. Biochemical and Biophysical Research Communications, 2004,317(2):414-420.
doi: 10.1016/j.bbrc.2004.03.048
[20]   Han Y, Zhao L, Yu Z , et al. Role of mannose receptor in oligochitosan-mediated stimulation of macrophage function. International Immunopharmacology, 2005,5(10):1533-1542.
doi: 10.1016/j.intimp.2005.04.015
[21]   Schimpl M, Rush C L, Betou M , et al. Human YKL-39 is a pseudo-chitinase with retained chitooligosaccharide-binding properties. Biochemical Journal, 2012,446(1):149-157.
doi: 10.1042/BJ20120377
[22]   Ranok A, Wongsantichon J, Robinson R C , et al. Structural and thermodynamic insights into chitooligosaccharide binding to human cartilage chitinase 3-like protein 2 (CHI3L2 or YKL-39). Journal of Biological Chemistry, 2015,290(5):2617-2629.
doi: 10.1074/jbc.M114.588905
[23]   Hayafune M, Berisio R, Marchetti R , et al. Chitin-induced activation of immune signaling by the rice receptor CEBiP relies on a unique sandwich-type dimerization. Proceedings of the National Academy of Sciences, 2014,111(3):E404-E413.
doi: 10.1073/pnas.1312099111
[24]   Liu B, Li J F, Ao Y , et al. Lysin motif-containing proteins LYP4 and LYP6 play dual roles in peptidoglycan and chitin perception in rice innate immunity. Plant Cell, 2012,24(8):3406-3419.
doi: 10.1105/tpc.112.102475
[25]   Xu J, Wang G, Wang J , et al. The lysin motif-containing proteins, Lyp1, Lyk7 and LysMe3, play important roles in chitin perception and defense against Verticillium dahliae in cotton. BMC Plant Biology, 2017,17(1):148.
doi: 10.1186/s12870-017-1096-1
[26]   Liu T, Liu Z, Song C , et al. Chitin-induced dimerization activates a plant immune receptor. Science, 2012,336(6085):1160-1164.
doi: 10.1126/science.1218867
[27]   Winkler A J , Dominguez-Nunez J A ,Aranaz I , et al. Short-chain chitin oligomers: promoters of plant growth. Mar Drugs, 2017,15:40.
doi: 10.3390/md15020040
[1] CHEN Zhong-wei,ZHENG Pu,CHEN Peng-cheng,WU Dan. Screening and Characterization of Thermostable Phytase Mutants[J]. China Biotechnology, 2021, 41(2/3): 30-37.
[2] CHEN Xin-jie,QIAN Zhi-lan,LIU Qi,ZHAO Qing,ZHANG Yuan-xing,CAI Meng-hao. Modification of Aromatic Amino Acid Synthetic Pathway in Pichia pastoris to Produce Cinnamic Acid and ρ-Coumaric Acid[J]. China Biotechnology, 2021, 41(10): 52-61.
[3] SHI Peng-cheng, JI Xiao-jun. Advances in Expression of Human Epidermal Growth Factor in Yeast[J]. China Biotechnology, 2021, 41(1): 72-79.
[4] Yuan TIAN,Yan-ling LI. Biosynthesis of Fusaruside Based on Recombinant Pichia pastoris[J]. China Biotechnology, 2019, 39(7): 8-14.
[5] Qiang-qiang PENG,Qi LIU,Ming-qiang XU,Yuan-xing ZHANG,Meng-hao CAI. Heterologous Expression of Insulin Precursor in A Newly Engineered Pichia pastoris[J]. China Biotechnology, 2019, 39(7): 48-55.
[6] Xin-miao WANG,Kang ZHANG,Sheng CHEN,Jing WU. Recombinant Expression and Fermentation Optimization of Dictyoglomus thermophilum Cellobiose 2-Epimerase in Bacillus subtilis[J]. China Biotechnology, 2019, 39(7): 24-31.
[7] Fan SUN,Ling-qia SU,Kang ZHANG,Jing WU. D-psicose 3-epimerase Gene Overexpression in Bacillus subtilis and Immobilization of Cells[J]. China Biotechnology, 2018, 38(7): 83-88.
[8] ZHANG Ling,WANG Nan,JIN Lv-hua,LIN Rong,YANG Hai-lin. To Promote the Expression of Leucine Dehydrogenase in Bacillus subtilis via Dual-Promoter and Fermentation Research[J]. China Biotechnology, 2018, 38(12): 21-31.
[9] Si-ming JIAO,Gong CHENG,Yu-chen ZHANG,Cui FENG,Li-shi REN,Jian-jun LI,Yu-guang DU. Expression of Chitinase from Trichoderma reesei and Analysis the Composition and Structure of its Hydrolysates[J]. China Biotechnology, 2018, 38(10): 30-37.
[10] YANG Qing, WANG Bin, WANG Ya-wei, ZHANG Hua-shan, XIONG Hai-rong, ZHANG Li. Comparison of Signal Peptides for Two Hemicellulase Secretory Expression[J]. China Biotechnology, 2017, 37(8): 15-22.
[11] FENG Xue, GAO Xiang, NIU Chun-qing, LIU Yan. Construction of Pichia pastoris Expression Vector of Codon Optimized αB-crystallin Gene and Expression Optimization[J]. China Biotechnology, 2017, 37(7): 42-47.
[12] ZHAN Chun-jun, LI Xiang, LIU Guo-qiang, LIU Xiu-xia, YANG Yan-kun, BAI Zhong-hu. Identification of Glycerol Transporter in Pichia pastoris and Function Research[J]. China Biotechnology, 2017, 37(7): 48-55.
[13] YANG Xu, HUANG Wei-wei, YAO Yu-feng, LIU Cun-bao, SUN Wen-jia, BAI Hong-mei, MA Yan-bing. Impact Factors on the Expression of Recombinant Human Papillomavirus 16 L1 Protein in Pichia pastoris[J]. China Biotechnology, 2017, 37(10): 1-7.
[14] YUE Chang-wu, LI Yuan-yuan, LV Yu-hong, WANG Miao, SHAO Mei-yun, LIU Ming-hao, HUANG Ying. Isolation, Expression and Identification of Multifunctional Chitosanase from Marine Streptomyces olivaceus FXJ7.023[J]. China Biotechnology, 2014, 34(8): 47-53.
[15] . Cloning and sequence analysis of chitosanase gene from Bacillus sp. S-1[J]. China Biotechnology, 2009, 29(05): 72-77.