Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (2): 38-48    DOI: 10.13523/j.cb.20190206
Orginal Article     
The Development of Immuno-oncology Therapy and the Biomarker Research
Zhen-hu LI,Yun-fei WU,Ying PAN,Zhao-xiang REN,Xiang-chao GU,Liang TANG,Xin-zhong WANG,Juan ZHANG()
Cstone Pharmaceuticals (Su Zhou) Co., Ltd. Suzhou 215123, China
Download: HTML   PDF(1949KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Due to the development of immunology and oncology, and their cross infiltration and integration, immuno-oncology (IO) has gradually become a innovative hot area, which shed new light on cancer therapy. IO therapies fight tumors through activating or normalizing the body’s immune system, such as T cells, NK cells, etc., aiming to achieve disease remission or cure.. Along with the in-depth research, a variety of new IO therapy drugs have been approved and showed the unprecedented universality in a spectrum of cancer types. However, improving patient response rate is still a critical issue in the field. This article will analyze the opportunities and challenges in the process of IO therapy development from the perspectives of new IO target discovery, the combination strategy and the application of biomarkers.



Key wordsTumor      Immuno-oncology      PD-(L)1      Biomarker     
Received: 10 January 2019      Published: 26 March 2019
ZTFLH:  Q819  
Cite this article:

Zhen-hu LI,Yun-fei WU,Ying PAN,Zhao-xiang REN,Xiang-chao GU,Liang TANG,Xin-zhong WANG,Juan ZHANG. The Development of Immuno-oncology Therapy and the Biomarker Research. China Biotechnology, 2019, 39(2): 38-48.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20190206     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I2/38

Fig.1 History of Immuno-oncology Therapy Development (Adapted from[1])
Fig.2 The Overview of 2004 Immuno-oncology Agents (sourced from[13])
适应症 CTLA-4抗体 PD-1抗体 PD-L1抗体
Yervoy
(Ipilimumab)
Keytruda
(Pembrolizumab)
Opdivo
(Nivolumab)
Libtayo
(Cemiplimab)
Tecentriq
(Atezolizumab)
Imfinzi
(Durvalumab)
Bavencio
(Avelumab)
黑色素瘤 √2011.03 √2014.09 √2014.12
dMMR/MSI-H型结肠癌 √2018.07 √2017.05 √2017.08
宫颈癌 √2018.06
非小细胞肺癌 √2015.10 √2015.03 √2016.10 √2018.02
小细胞肺癌 √2018.08
肾癌 √2018.04 √2015.11
霍奇金淋巴瘤 √2017.03 √2016.05
原发纵膈大B细胞淋巴瘤 √2018.06
头颈癌 √2016.08 √2016.11
梅克尔细胞癌 √2017.03
晚期或转移性胃癌或
胃食管交界处癌
√2017.09
转移性胃癌 √2017.09
肝癌 √2017.09
尿路上皮癌 √2017.05 √2017.02 √2016.05 √2017.05 √2017.05
dMMR/MSI-H型实体瘤 √2017.05
转移性、局部晚期皮肤
鳞状细胞癌
√2018.09
Table 1 Approved Immune Checkpoint Inhibitor Drugs
Fig.3 The Cancer-immunity Cycle (sourced from[15])
Fig.4 A model illustrating the potential impact of single agent and combination cancer immunotherapies on survival (sourced from[17])
Fig.5 The landscape analysis of targets of anti-PD-1/L1 combination trials. The size of the bubble correlates to the number of trials (sourced from[13])
Fig.6 Cancer-immune Phenotypes (sourced from[19])
靶点 代表药物 作用机制 联合药物 适应症 临床试验阶段
LAG3 IMP321 LAG-3融合蛋白 Paclitaxel 转移性乳腺癌 Ph II
LAG3 BMS986016 抗LAG-3单克隆抗体 Anti-PD-1 晚期实体瘤和恶性血液肿瘤 Ph III
TIM-3 TSR-022 抗TIM-3单克隆抗体 Anti-PD-1 晚期恶性实体瘤 Ph II
TIGIT OMP-313M32 抗TIGIT单克隆抗体 Anti-PD-1 晚期和转移性实体瘤 Ph I
VISTA JNJ-6160588 抗VISTA单克隆抗体 - 晚期和转移性实体瘤 Ph I
B7-H3 Enoblituzumab 抗B7-H3单克隆抗体 Anti-PD-1 B7-H3表达的复发难治性恶性实体瘤 Ph II
ICOS JTX-2011 抗ICOS 激动性抗体 Anti-PD-1 晚期恶性实体瘤 Ph III
GITR MEDI1873 融合蛋白 - 晚期恶性实体瘤 Ph I
CD27/CD70 Varlilumab 抗CD27激动性抗体 Anti-PD-1 晚期难治性恶性实体瘤和淋巴瘤 Ph II
CD47/SIRPα Hu5F9-G4 抗CD47单克隆抗体 Anti-PD-L1 晚期恶性实体瘤和淋巴瘤 Ph I
IDO Epacadostat IDO-1小分子抑制剂 Anti-PD-1 晚期恶性肿瘤 Ph III
KIR family IPH2101 抗KIR2D单克隆抗体 - 多发性骨髓瘤 Ph II
CD94/NKG2A IPH2201 抗NKG2A单克隆抗体 Anti-PD-L1 晚期头颈部恶性肿瘤 Ph II
Table 2 Summary of Immuno-oncology Therapy Targets under Clinical Development
PD-L1检测抗体 28-8(Dako) 22C3(Dako) SP142(Ventana) SP263(Ventana)
药物名称 Opdivo(Nivolumab) Keytruda(Pembrolizumab) Tecentriq(Atezolizumab) Imfinzi(Durvalumab)
药品开发商 百时美施贵(BMS) 默克(Merck) 基因泰克(Genentech) 阿斯利康(Astrazeneca)
检测平台 Autostainer Link 48 Benchmark ULTRA
Cut-off值 非小细胞肺癌
TPS≥1%,5%,10%
非小细胞肺癌
TPS≥1%,50%
非小细胞肺癌
TC≥50% or IC≥10%
尿路上皮癌满足以下条件之一:
TC≥25% or ICP>
1% and IC+ ≥25% or
ICP=1% and IC+ =100%
头颈鳞状细胞癌
TPS≥1%
胃癌及胃食管结合部癌
CPS≥1
宫颈癌CPS≥1 尿路上皮癌IC≥5%
尿路上皮癌TPS≥1% 尿路上皮癌CPS≥10
Table 3 PD-L1 Diagnostic Assay Platforms
[1]   Kirkwood J M, Tarhini A A, Panelli M C , et al. Next generation of immunotherapy for melanoma. J Clin Oncol, 2008,26(20):3445-3455.
doi: 10.1200/JCO.2007.14.6423 pmid: 18612161
[2]   Balkwill F, Mantovani A .( Inflammation and cancer: back to virchow? Lancet, 2001,357(9255):539-545.
doi: 10.1016/S0140-6736(00)04046-0
[3]   Felgner S, Kocijancic D, Frahm M , et al. Bacteria in cancer therapy: renaissance of an old concept. Int J Microbiol, 2016,2016:8451728.
doi: 10.1155/2016/8451728 pmid: 27051423
[4]   Kim R, Emi M, Tanabe K . Cancer immunoediting from immune surveillance to immune escape. Immunology, 2007,121(1):1-14.
doi: 10.1111/j.1365-2567.2007.02587.x pmid: 17386080
[5]   Steinman R M, Cohn Z A . Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med, 1973,137(5):1142-1162.
doi: 10.1084/jem.137.5.1142
[6]   Zinkernagel R M, Doherty P C . Immunological surveillance against altered self components by sensitised T lymphocytes in lymphocytic choriomeningitis. Nature, 1974,251(5475):547-548.
doi: 10.1038/251547a0 pmid: 4547543
[7]   Bevan M J . Cross-priming for a secondary cytotoxic response to minor H antigens with H-2 congenic cells which do not cross-react in the cytotoxic assay. J Exp Med, 1976,143(5):1283-1288.
doi: 10.1084/jem.143.5.1283 pmid: 1083422
[8]   Lotze M T, Chang A E, Seipp C A , et al. High-dose recombinant interleukin 2 in the treatment of patients with disseminated cancer. Responses, treatment-related morbidity, and histologic findings. JAMA, 1986,256(22):3117-3124.
doi: 10.1001/jama.1986.03380220083027
[9]   Payne R, Glenn L, Hoen H , et al. Durable responses and reversible toxicity of high-dose interleukin-2 treatment of melanoma and renal cancer in a Community Hospital Biotherapy Program. J Immunother Cancer, 2014,2:13.
doi: 10.1186/2051-1426-2-13 pmid: 24855563
[10]   Boyiadzis M, Foon K A . Approved monoclonal antibodies for cancer therapy. Expert Opin Biol Ther, 2008,8(8):1151-1158.
doi: 10.1517/14712598.8.8.1151 pmid: 18613766
[11]   Sharma P, Allison J P . The future of immune checkpoint therapy. Science, 2015,348(6230):56-61.
doi: 10.1126/science.aaa8172
[12]   Hazarika M, Chuk M K, Theoret M R , et al. U.S. FDA approval summary: nivolumab for treatment of unresectable or metastatic melanoma following progression on ipilimumab. Clin Cancer Res, 2017,23(14):3484-3488.
doi: 10.1158/1078-0432.CCR-16-0712 pmid: 28087644
[13]   Tang J, Shalabi A , Hubbard-Lucey V M. Comprehensive analysis of the clinical immuno-oncology landscape. Ann Oncol, 2018,29(1):84-91.
doi: 10.1093/annonc/mdx755 pmid: 29228097
[14]   Mahoney K M, Rennert P D, Freeman G J . Combination cancer immunotherapy and new immunomodulatory targets. Nat Rev Drug Discov, 2015,14(8):561-584.
doi: 10.1038/nrd4591 pmid: 26228759
[15]   Chen D S, Mellman I . Oncology meets immunology: the cancer-immunity cycle. Immunity, 2013,39(1):1-10.
doi: 10.1016/j.immuni.2013.07.012
[16]   Lipson E J, Forde P M, Hammers H J , et al. Antagonists of PD-1 and PD-L1 in cancer treatment. Semin Oncol, 2015,42(4):587-600.
doi: 10.1053/j.seminoncol.2015.05.013
[17]   Emens L A, Ascierto P A, Darcy P K , et al. Cancer immunotherapy: Opportunities and challenges in the rapidly evolving clinical landscape. Eur J Cancer, 2017,81:116-129.
doi: 10.1016/j.ejca.2017.01.035 pmid: 28623775
[18]   Wolchok J D, Chiarion-Sileni V, Gonzalez R , et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med, 2017,377(14):1345-1356.
doi: 10.1056/NEJMoa1709684 pmid: 28889792
[19]   Chen, D S , Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature, 2017,541(7637):321-330.
doi: 10.1038/nature21349 pmid: 28102259
[20]   Burugu S, Dancsok A R, Nielsen T O . Emerging targets in cancer immunotherapy. Semin Cancer Biol, 2018,52(Pt 2):39-52.
doi: 10.1016/j.semcancer.2017.10.001 pmid: 28987965
[21]   Huang R Y, Francois A , McGray A R, et al. Compensatory upregulation of PD-1, LAG-3, and CTLA-4 limits the efficacy of single-agent checkpoint blockade in metastatic ovarian cancer. Oncoimmunology, 2016,6(1):e1249561.
[22]   Shayan G, Srivastava R, Li J , et al. Adaptive resistance to anti-PD1 therapy by Tim-3 upregulation is mediated by the PI3K-Akt pathway in head and neck cancer. Oncoimmunology, 2016,6(1):e1261779.
doi: 10.1080/2162402X.2016.1261779 pmid: 28197389
[23]   Deuss F A, Gully B S, Rossjohn J , et al. Recognition of nectin-2 by the natural killer cell receptor T cell immunoglobulin and ITIM domain (TIGIT). J Biol Chem, 2017,292(27):11413-11422.
doi: 10.1074/jbc.M117.786483 pmid: 28515320
[24]   B?ger C, Behrens H M, Krüger S , et al. The novel negativecheckpointregulator VISTA is expressed in gastric carcinoma and associated with PD-L1/PD-1: A future perspective for a combined gastric cancer therapy? Oncoimmunology, 2017,6(4):e1293215.
doi: 10.1080/2162402X.2017.1293215 pmid: 5414883
[25]   Beatty G L , O’Dwyer P J, Clark J, et al. First-in-human phase I study of the oral inhibitor of indoleamine 2,3-dioxygenase-1 epacadostat (INCB024360) in patients with advanced solid malignancies. Clin Cancer Res, 2017,23(13):3269-3276.
doi: 10.1158/1078-0432.CCR-16-2272 pmid: 28053021
[26]   Brignone C, Gutierrez M, Mefti F , et al. First-line chemoimmunotherapy in metastatic breast carcinoma: combination of paclitaxel and IMP321 (LAG-3Ig) enhances immune responses and antitumor activity. J Transl Med, 2010,8:71.
doi: 10.1186/1479-5876-8-71 pmid: 20653948
[27]   Dougall W C, Kurtulus S, Smyth M J , et al. TIGIT and CD96: new checkpoint receptor targets for cancer immunotherapy. Immunol Rev, 2017,276(1):112-120.
doi: 10.1111/imr.12518 pmid: 28258695
[28]   Liu J, Wang L, Zhao F , et al. Pre-clinical development of a humanized anti-CD47 antibody with anti-cancer therapeutic potential. PLoS One, 2015,10(9):e0137345.
doi: 10.1371/journal.pone.0137345 pmid: 26390038
[29]   Gibney G T, Weiner L M, Atkins M B . Predictive biomarkers for checkpoint inhibitor-based immunotherapy. Lancet Oncol, 2016,17(12):e542-e551.
doi: 10.1016/S1470-2045(16)30406-5 pmid: 27924752
[30]   Savic Prince S, Bubendorf L . Predictive potential and need for standardization of PD-L1 immunohistochemistry. World J Urol, 2018.
doi: 10.1007/s00428-018-2445-7
[31]   Meng X, Huang Z, Teng F , et al. Predictive biomarkers in PD-1/PD-L1 checkpoint blockade immunotherapy. Cancer Treat Rev, 2015,41(10):868-876.
doi: 10.1016/j.ctrv.2015.11.001 pmid: 26589760
[32]   Garon E B, Rizvi N A, Hui R , et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med, 2015,372(21):2018-2028.
doi: 10.1056/NEJMoa1501824 pmid: 25891174
[33]   Hirsch F R , McElhinny A, Stanforth D, et al. PD-L1 immunohistochemistry assays for lung cancer: Results from phase 1 of the blueprint PD-L1 IHC assay comparison project. J Thorac Oncol, 2017,12(2):208-222.
doi: 10.1016/j.jtho.2016.11.2228 pmid: 27913228
[34]   Marianne J R, Alan S, Anita M , et al. Agreement between programmed cell death ligand-1 diagnostic assays across multiple protein expression cut-offs in non-small cell lung cancer. Clinical Cancer Research An Official Journal of the American Association for Cancer Research, 2017,23(14):3585.
doi: 10.1158/1078-0432.CCR-16-2375 pmid: 28073845
[35]   Topalian S L, Taube J M, Anders R A , et al. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer, 2016,16(5):275-287.
doi: 10.1038/nrc.2016.36
[36]   Pitt J M, Vétizou M, Daillère R , et al. Resistance mechanisms to immune-checkpoint blockade in cancer: Tumor-intrinsic and -Extrinsic Factors. Immunity, 2016,44(6):1255-1269.
doi: 10.1016/j.immuni.2016.06.001
[37]   Sharma P, Hu-Lieskovan S, Wargo J A , et al. Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy. Cell, 2017,168(4):707-723.
doi: 10.1016/j.cell.2017.01.017 pmid: 28187290
[38]   Yarchoan M, Hopkins A, Jaffee E M . Tumor mutational burden and response rate to PD-1 inhibition. N Engl J Med, 2017,377(25):2500-2501.
doi: 10.1056/NEJMc1713444 pmid: 29262275
[39]   Dubsky P C, Fesl C, Singer C F , et al. Abstract GS6-04: The endopredict score predicts residual cancer burden after neoadjuvant chemotherapy and after neoendocrince therapy in HR+/HER2- breast cancer patients from ABCSG 34. Journal of Clinical Oncology, 2018,36(15suppl):589-589.
[40]   Rizvi N A, Hellmann M D, Snyder A , et al. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science, 2015,348(6230):124-128.
doi: 10.1126/science.aaa1348 pmid: 25765070
[41]   Hellmann M D, Ciuleanu T E, Pluzanski A , et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N Engl J Med, 2018,378(22):2093-2104.
doi: 10.1056/NEJMoa1801946 pmid: 29658845
[42]   Boyiadzis M M, Kirkwood J M, Marshall J L , et al. Significance and implications of FDA approval of pembrolizumab for biomarker-defined disease. J Immunother Cancer, 2018,6(1):35.
doi: 10.1186/s40425-018-0342-x pmid: 29754585
[43]   FDA approves first cancer treatment for any solid tumor with a specific genetic feature. Oncology Times.[2017-05-23].
[44]   Le D T, Durham J N, Smith K N , et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science, 2017,357(6349):409-413.
doi: 10.1126/science.aan6733 pmid: 5576142
[45]   Dudley J C, Lin M T, Le D T , et al. Microsatellite instability as a biomarker for PD-1 blockade. Clin Cancer Res, 2016,22(4):813-820.
doi: 10.1158/1078-0432.CCR-15-1678 pmid: 26880610
[46]   Chalmers Z R, Connelly C F, Fabrizio D , et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med, 2017,9(1):34.
doi: 10.1186/s13073-017-0424-2 pmid: 5395719
[47]   Higgs B W, Morehouse C A, Streicher K , et al. Interferon gamma messenger RNA signature in tumor biopsies predicts outcomes in patients with non-small-cell lung carcinoma or urothelial cancer treated with durvalumab. Clin Cancer Res, 2018,24(16):3857-3866.
doi: 10.1158/1078-0432.CCR-17-3451 pmid: 29716923
[48]   Ayers M, Lunceford J, Nebozhyn M , et al. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade.[J] Clin Invest. 2017,127(8):2930-2940.
doi: 10.1172/JCI91190
[49]   Cristescu R, Mogg R, Ayers M , et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science, 2018, 362(6411):eaar3593.
[1] ZHAO Meng-ze,LI Feng-zhi,WANG Peng-yin,LI Jian,XU Han-mei. Research Progress of Dual-target Blocking Therapy of PD-L1 and VEGF[J]. China Biotechnology, 2021, 41(9): 71-77.
[2] LV Hui-zhong,ZHAO Chen-chen,ZHU Lian,XU Na. Progress of Using Exosome for Drug Targeted Delivery in Tumor Therapy[J]. China Biotechnology, 2021, 41(5): 79-86.
[3] YUAN Bo,WANG Jie-wen,KANG Guang-bo,HUANG He. Research Progress and Application of Bispecific Nanobody[J]. China Biotechnology, 2021, 41(2/3): 78-88.
[4] DENG Rui,ZENG Jia-li,LU Xue-mei. Screening and Structure-activity Relationship Analysis of Anti-tumor Derived Peptides Based on Musca domestica cecropin[J]. China Biotechnology, 2021, 41(11): 14-22.
[5] QIU Jin-ge,LIU De-wu,SUN Bao-li,LI Yao-kun,GUO Yong-qing,DENG Ming,LIU Guang-bin. Research Progress on Animal Exosome Isolation Methods[J]. China Biotechnology, 2020, 40(9): 36-42.
[6] LIN Shi-xin,LIU Dong-chen,LEI Yun,XIONG Sheng,XIE Qiu-ling. Screening, Expression and Specificity Detection of Anti-TNF-α Nanobody[J]. China Biotechnology, 2020, 40(7): 15-21.
[7] YANG Wei,SONG Fang-xiang,WANG Shuai,ZHANG Li,WANG Hong-xia,LI Yan. Preparation and Application of Janus Nanoparticles in Drug Delivery System[J]. China Biotechnology, 2020, 40(7): 70-81.
[8] ZHANG Bao-hui,XIONG Hua-long,ZHANG Tian-ying,YUAN Quan. Research Progress on Vesicular Stomatitis Virus-based Oncolytic Virotherapy[J]. China Biotechnology, 2020, 40(6): 53-62.
[9] TONG Mei,CHENG Yong-qing,LIU Jin-yi,XU Chen. Construction of a Strain for Promoting Production of Small Molecule Antibodies in Periplasmic Space of Escherichia coli[J]. China Biotechnology, 2020, 40(5): 48-56.
[10] DAI Qi-nan,ZHANG Jing-hong. Advances in Molecular Mechanisms Related to Tumor Multi-drug Resistance, Autophagy, DNA Repair and Tumor Stem Cells[J]. China Biotechnology, 2020, 40(4): 69-77.
[11] QIAN Ying,QIAN Chen,BAI Xiao-qing,WANG Jing-jing. Application of Adjuvant in Cancer Immunotherapy[J]. China Biotechnology, 2020, 40(3): 96-103.
[12] XIAO Xue-jun,TANG Qi,XINHUA Nabi. CAR-T Therapy Targeting Tumor Microenvironment[J]. China Biotechnology, 2020, 40(12): 67-74.
[13] HE Xun,ZHANG Peng,ZHANG Jun-xiang. Progress in the Construction and Application of Organoids[J]. China Biotechnology, 2020, 40(12): 82-87.
[14] ZHU Yongzhao,TAO Jin,REN Meng-meng,XIONG Ran,HE Ya-qin,ZHOU Yu,LU Zhen-hui,DU Yong,YANG Zhi-hong. Autophagy Protects Against Apoptosis of Human Placental Mesenchymal Stem Cells of Fetal Origin Induced by Tumor Necrosis Fator-α[J]. China Biotechnology, 2019, 39(9): 62-67.
[15] LIU Yan,DAI Peng,ZHU Yun-feng. Research Progress of Exosome as Tumor Marker[J]. China Biotechnology, 2019, 39(8): 74-79.