Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (7): 70-81    DOI: 10.13523/j.cb.1912042
    
Preparation and Application of Janus Nanoparticles in Drug Delivery System
YANG Wei1,2,SONG Fang-xiang3,WANG Shuai1,2,ZHANG Li3,WANG Hong-xia3,LI Yan1,2,**()
1 School of Pharmacy,Guizhou University, Guiyang 550025, China
2 Key Laboratory of Pharmaceutical Synthesis,Guizhou University, Guiyang 550025, China
3 School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
Download: HTML   PDF(2250KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Janus nanoparticles (JNPs) are used to describe a heterogeneous solid material composed of two different sides. Each side of JNPs is different in chemical nature and/or polarity, and can combine the characteristics and functions of different materials, which is difficult to achieve with homogeneous materials of the same kind. In recent years, major breakthroughs have been made in the preparation of JNPs, but the development direction of its application is still a challenging field, among which the research in the field of antitumor drug delivery systems is more prominent. The preparation method and application of Janus nanoparticles in drug delivery system, and puts forward the research prospects and possible challenges were mainly introduced.



Key wordsJanus nanoparticles      Preparation      Anti-tumor      Drug delivery     
Received: 23 December 2019      Published: 13 August 2020
ZTFLH:  TB34  
Corresponding Authors: Yan LI     E-mail: yanli@gzu.edu.cn
Cite this article:

YANG Wei,SONG Fang-xiang,WANG Shuai,ZHANG Li,WANG Hong-xia,LI Yan. Preparation and Application of Janus Nanoparticles in Drug Delivery System. China Biotechnology, 2020, 40(7): 70-81.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.1912042     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I7/70

Fig.1 Different Types of Janus nanoparticles
Fig.2 Mechanism of action of dual targeting MSN: cell targeting and mitochondrial targeting
Fig.3 Preparation of SPIONs as a multifunctional JNPs for targeted drug delivery systems
Fig.4 Preparation modification and application principle of AuNC/Fe(OH)3-PAA JNPs
Fig.5 Schematic illustration of the FA-targeted Janus nanoparticles with the NIR irradiation-triggered release behavior of ICG and silver ions for synergistic liver cancer chemo/photothermal therapy
Fig.6 Loquat-like Janus drug delivery system (a) The schematic diagrams for loquat, GS and JGS respectively (b)-(d) The SEM image of G, GS and JGS, respectively
Fig.7 Representation of nanodevice N1 based on Janus AuNSt-MSNP and NIR light triggered drug delivery mechanism by photo-dissociation of 2-nitrobenzyl derivative 5
Fig.8 The preparation process of snowman-like Janus nanoparticles (a) Schematic showing the controlled synthetic strategy for obtaining Au/Fe3O4@C JNPs (b) Selective modification of Au/Fe3O4 @C JNP
Fig.9 Synthesis route and application of Au@Ag nanorod@ZIF-8 nanoparticle (NPs)
Fig.10 Synthesis of Janus mesoporous silica nanocomposites by anisotropic island growth
Type Composition Morphology Fabrication method Loading capacity Cell viability Ref.
Single structure JNPs FA-MSN-TPP Sphere Modified Sto?bermethod TOP, 5 wt% LNCaP, 45%(100μg/ml) [37]
DOX-PCL-SPION-sPEG-FA Sphere Pickering emulsion technique. - Rat C6 Glioma Cell Line, 50%
(100μg/ml)
[39]
Composite structure JNPs PCL-AuNC/Fe(OH)3-PAA Cage+Sphere Surface nucleation and seeded growth DOX, 20 wt% Dtxl, 5 wt% HepG-2, 20% (6.25μg/ml) [40]
FA-JNPs@ICG Rod Modified sol-gel method ICG, 4.9 wt% SMMC-7721, 30% (100μg/ml) [43]
JGSMD Loquat Seeded growth DOX, 7.71 wt% - [47]
AuNSt-MSNP Star-Sphere Seeded growth DOX, 9.5 wt% HeLa, 70%(100μg/ml) [51]
FA-PEG-Au/Fe3O4@C Snowman Surface nucleation and seeded growth DOX, 42.9 wt% HeLa, 10%(50μg/ml) [57]
Au@Ag nanorod@ZIF-8 Rod Seeded growth DOX, 37.62 wt% HeLa, 65%(250μg/ml) [64]
UCNP@SiO2@mSiO2&PMO Cube+Sphere Surface nucleation and seeded growth DOX, 5.4 wt% PTX, 6.6 wt% HeLa,50%(50μg/ml) [65]
Table 1 Composition, morphology, preparation methods, drug loading rate and analysis of tumor cell activity of Janus nanoparticles for different types of drug delivery
[1]   He Q J, Shi J L. MSN anti-cancer nanomedicines: chemotherapy enhancement, overcoming of drug resistance, and metastasis inhibition. Advanced Materials, 2014,26(3):391-411.
doi: 10.1002/adma.201303123 pmid: 24142549
[2]   Gao H L, Qian J, Cao S J, et al. Precise glioma targeting of and penetration by aptamer and peptide dual-functioned nanoparticles. Biomaterials, 2012,33(20):5115-5123.
doi: 10.1016/j.biomaterials.2012.03.058
[3]   Liong M, Lu J, Kovochich M, et al. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano, 2008,2(5):889-896.
doi: 10.1021/nn800072t pmid: 19206485
[4]   Chen W S, Huang Q Y, Ou W Z, et al. Self-reporting liposomes for intracellular drug release. Small, 2014,10(7):1261-1265.
doi: 10.1002/smll.201302698
[5]   Zhang T, Liu H, Li Y T, et al. A pH-sensitive nanotherapeutic system based on a marine sulfated polysaccharide for the treatment of metastatic breast cancer through combining chemotherapy and COX-2 inhibition. Acta Biomaterialia, 2019,99:412-425. DOI: 10.1016/j.actbio.2019.09.001.
doi: 10.1016/j.actbio.2019.09.001 pmid: 31494294
[6]   Zhang W J, Wang F H, Wang Y, et al. pH and near-infrared light dual-stimuli responsive drug delivery using DNA-conjugated gold nanorods for effective treatment of multidrug resistant cancer cells. Journal of Controlled Release, 2016,232(28):9-19.
doi: 10.1016/j.jconrel.2016.04.001
[7]   Hervault A, Dunn A E, Lim M, et al. Doxorubicin loaded dual pH- and thermo-responsive magnetic nanocarrier for combined magnetic hyperthermia and targeted controlled drug delivery applications. Nanoscale, 2016,8(24):12152-12161.
doi: 10.1039/c5nr07773g pmid: 26892588
[8]   Liang X L, Gao J, Jiang L D, et al. Nanohybrid liposomal cerasomes with good physiological stability and rapid temperature responsiveness for high intensity focused ultrasound triggered local chemotherapy of cancer. ACS Nano, 2015,9(2):1280-1293.
doi: 10.1021/nn507482w pmid: 25599568
[9]   de Gennes P G. Soft matter. Science, 1992,256(5056):495-497.
doi: 10.1126/science.256.5056.495 pmid: 17787946
[10]   Walther A, André X, Drechsler M, et al. Janus discs. Journal of the American Chemical Society, 2007,129(19):6187-6198.
doi: 10.1021/ja068153v pmid: 17441717
[11]   Min N G, Choi T M, Kim S H. Bicolored Janus microparticles created by phase separation in emulsion drops. Macromolecular Chemistry and Physics, 2016,218(2), 1600265.
doi: 10.1002/macp.v218.2
[12]   Chaturvedi N, Juluri B K, Hao Q, et al. Simple fabrication of snowman-like colloids. Journal of Colloid & Interface Science, 2012,371(1):28-33.
doi: 10.1016/j.jcis.2012.01.003 pmid: 22289257
[13]   Wang Z, Chang Z, Lu M, et al. Shape-controlled magnetic mesoporous silica nanoparticles for magnetically-mediated suicide gene therapy of hepatocellular carcinoma. Biomaterials, 2018,154:147-157.DOI: 10.1016/j.biomaterials.2017.10.047.
doi: 10.1016/j.biomaterials.2017.10.047 pmid: 29128843
[14]   Walther A, Müller, Axel H E. Janus particles: synthesis, self-assembly, physical properties, and applications. Chemical Reviews, 2013,113(7):5194-5261.
doi: 10.1021/cr300089t pmid: 23557169
[15]   Sundararajan P, Wang J, Rosen L A, et al. Engineering polymeric Janus particles for drug delivery using microfluidic solvent dissolution approach. Chemical Engineering Science, 2018,178:199-210.DOI: 10.1016/j.ces.2017.12.013.
doi: 10.1016/j.ces.2017.12.013
[16]   Ruhland T M, Gr?schel A H, Walther A, et al. Janus cylinders at liquid-liquid interfaces. Langmuir, 2011,27(16):9807-9814.
doi: 10.1021/la201863x pmid: 21755956
[17]   Das S K, Mandal S S, Bhattacharyya A J. Ionic conductivity, mechanical strength and Li-ion battery performance of mono-functional and bi-functional (“Janus”) “soggy sand” electrolytes. Energy & Environmental Science, 2011,4(4):1391-1399.
[18]   Zhang L, Li S, Chen X, et al. Tailored surfaces on 2D material: UFO-like cyclodextrin-Pd nanosheet/metal organic framework Janus nanoparticles for synergistic cancer therapy. Advanced Functional Materials, 2018,28(51):1803815.
[19]   Xu C, Wang B, Sun S. Dumbbell-like Au-Fe3O4 nanoparticles for target-specific platin delivery. Journal of the American Chemical Society, 2009,131(12):4216-4217.
doi: 10.1021/ja900790v pmid: 19275156
[20]   Xu C, Sun S. New forms of superparamagnetic nanoparticles for biomedical applications. Advanced Drug Delivery Reviews, 2013,65(5):732-743.
doi: 10.1016/j.addr.2012.10.008 pmid: 23123295
[21]   Zhang L Y, Chen Y Y, Li Z L, et al. Tailored synthesis of octopus-type Janus nanoparticles for synergistic actively-targeted and chemo-photothermal therapy. Angewandte Chemie, 2016,128(5):2158-2161.
[22]   Shao D, Li J, Zheng X, et al. Janus “nano-bullets” for magnetic targeting liver cancer chemotherapy. Biomaterials, 2016,100:118-133.DOI: 10.1016/j.biomaterials.2016.05.030.
doi: 10.1016/j.biomaterials.2016.05.030 pmid: 27258482
[23]   Fang L, Wang W, Liu Y, et al. Janus nanostructures formed by mesoporous silica coating Au nanorods for near-infrared chemo-photothermal therapy. J Mater Chem B, 2017,44(5):8833-8838.
[24]   Shao D, Zhang X, Liu W L, et al. Janus silver-mesoporous silica nanocarriers for SERS traceable and pH-sensitive drug delivery in cancer therapy. ACS Applied Materials & Interfaces, 2016,8(7):4303-4308.
doi: 10.1021/acsami.5b11310 pmid: 26844695
[25]   Wang Y M, Ji X, Pang P, et al. Synthesis of Janus Au nanorods/polydivinylbenzene hybrid nanoparticles for chemo-photothermal therapy. Journal of Materials Chemistry B, 2018,6(16):2481-2488.
doi: 10.1039/c8tb00233a pmid: 32254465
[26]   Yuan H, Ma Q M, Song Y, et al. Phase-Separation-induced formation of Janus droplets based on aqueous two-phase systems. Macromolecular Chemistry and Physics, 2017,218(2):1600422.
[27]   Yabu H, Ohshima H, Saito Y. Double-phase-functionalized magnetic Janus polymer microparticles containing TiO2 and Fe2O3 nanoparticles encapsulated in mussel-inspired amphiphilic polymers. Acs Applied Materials & Interfaces, 2014,6(20):18122-18128.
doi: 10.1021/am506530s pmid: 25265162
[28]   Hu S H, Gao X. Nanocomposites with spatially separated functionalities for combined imaging and magnetolytic therapy. Journal of the American Chemical Society, 2010,132(21):7234-7237.
doi: 10.1021/ja102489q pmid: 20459132
[29]   Hu S H, Chen S Y, Gao X. Multifunctional nanocapsules for simultaneous encapsulation of hydrophilic and hydrophobic compounds and on-demand release. ACS Nano, 2012,6(3):2558-2565.
doi: 10.1021/nn205023w pmid: 22339040
[30]   Nisisako T, Torii T, Takahashi T, et al. ynthesis of monodisperse bicolored janus particles with electrical anisotropy using a microfluidic co-flow system. Advanced Materials, 2010,18(9):1152-1156.
doi: 10.1002/(ISSN)1521-4095
[31]   Xie H, She Z G, Wang S, et al. One-step fabrication of polymeric janus nanoparticles for drug delivery. Langmuir, 2012,28(9):4459-4463.
doi: 10.1021/la2042185 pmid: 22251479
[32]   Chen C H, Shah R K, Abate A R, et al. Janus particles templated from double emulsion droplets generated using microfluidics. Langmuir, 2009,25(8):4320-4323.
doi: 10.1021/la900240y pmid: 19366216
[33]   Wang F, Pauletti G M, Wang J, et al. Dual surface-functionalized janus nanocomposites of polystyrene/Fe3O4@SiO2 for simultaneous tumor cell targeting and stimulus-induced drug release. Advanced Materials, 2013,25(25):3485-3489.
doi: 10.1002/adma.201301376 pmid: 23681969
[34]   Razavi S, Hernandez L M, Read A, et al. Surface tension anomaly observed for chemically-modified Janus particles at the air/water interface. Journal of Colloid and Interface Science, 2020,558:95-99.DOI: 10.1016/j.jcis.2019.09.084.
doi: 10.1016/j.jcis.2019.09.084 pmid: 31585226
[35]   Sharifzadeh E, Salami-Kalajahi M, Hosseini M S, et al. A temperature-controlled method to produce Janus nanoparticles using high internal interface systems: Experimental and theoretical approaches. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016,506:56-62.DOI: 10.1016/j.colsurfa.2016.06.006.
doi: 10.1016/j.colsurfa.2016.06.006
[36]   Wang K L, Wang G, Lu C J. Particle contact angle at the oil-water interface: Effect of surface silanization. Particuology, 2019,44:218-224.DOI: 10.1016/j.partic.2018.05.011.
doi: 10.1016/j.partic.2018.05.011
[37]   López V, Villegas M R, Rodríguez V, et al. Janus mesoporous silica nanoparticles for dual-targeting for tumoral cells and mitochondria. ACS Applied Materials & Interfaces, 2017,9(32):26697-26706.
doi: 10.1021/acsami.7b06906 pmid: 28759196
[38]   Kim J, Ahn S I, Kim Y T. Nanotherapeutics engineered to cross the blood-brain barrier for advanced drug delivery to the central nervous system. Journal of Industrial & Engineering Chemistry, 2019,73:8-18.DOI: 10.1016/j.jiec.2019.01.021.
doi: 10.1016/j.jiec.2019.01.021 pmid: 31588177
[39]   Shaghaghi B, Khoee S, Bonakdar S. Preparation of multifunctional Janus nanoparticles on the basis of SPIONs as targeted drug delivery system. International Journal of Pharmaceutics, 2019,559:1-12.DOI: 10.1016/j.ijpharm.2019.01.020.
doi: 10.1016/j.ijpharm.2019.01.020 pmid: 30664992
[40]   Zhang L Y, Zhang M J, Zhou L, et al. Dual drug delivery and sequential release by amphiphilic Janus nanoparticles for liver cancer theranostics. Biomaterials, 2018,181:113-125.
doi: 10.1016/j.biomaterials.2018.07.060 pmid: 30081302
[41]   Yang K, Zhang S, Zhang G, et al. Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Letters, 2010,10(9):3318-3323.
doi: 10.1021/nl100996u pmid: 20684528
[42]   Chen Q, Liu X, Zeng J, et al. Albumin-NIR dye self-assembled nanoparticles for photoacoustic pH imaging and pH-responsive photothermal therapy effective for large tumors. Biomaterials, 2016,98:23-30. DOI: 10.1016/j.biomaterials.2016.04.041.
doi: 10.1016/j.biomaterials.2016.04.041 pmid: 27177219
[43]   Wang Z, Chang Z, Lu M, et al. Janus silver/silica nanoplatforms for light-activated liver cancer chemo/photothermal therapy. ACS Applied Materials & Interfaces, 2017,9(36):30306-30317.
doi: 10.1021/acsami.7b06446 pmid: 28836433
[44]   Cloughesy T F, Cavenee W K, Mischel P S. Glioblastoma: from molecular pathology to targeted treatment. Annual Review of Pathology Mechanisms of Disease, 2013,9:1-25.DOI: 10.1146/annurev-pathol-011110-130324.
doi: 10.1146/annurev-pathol-011110-130324
[45]   Parrish K, Sarkaria J, Elmquist W. Improving drug delivery to primary and metastatic brain tumors: strategies to overcome the blood-brain barrier. Clinical Pharmacology & Therapeutics, 2015,97(4):336-346.
doi: 10.1002/cpt.71 pmid: 25669487
[46]   Grabrucker A M, Ruozi B, Belletti D, et al. Nanoparticle transport across the Blood Brain Barrier. Tissue Barriers, 2016,4(1):e1153568.
doi: 10.1080/21688370.2016.1153568 pmid: 27141426
[47]   Liu Y, Wei C, Huang L, et al. Loquat inspired Janus drug delivery system for flexible and robust tumor targetingtherapy. ACS Biomaterials Science & Engineering, 2019,5(2):740-747.
[48]   Ibsen S, Zahavy E, Wrasdilo W, et al. A novel doxorubicin prodrug with controllable photolysis activation for cancer chemotherapy. Pharmaceutical Research, 2010,27(9):1848-1860.
doi: 10.1007/s11095-010-0183-x pmid: 20596761
[49]   Bai X, Li Z, Jockusch S, et al. Photocleavage of a 2-nitrobenzyl linker bridging a fluorophore to the 5 end of DNA. Proceedings of the National Academy of Sciences, 2003,100(2):409-413.
[50]   Jalani G, Naccache R, Rosenzweig D H, et al. Photocleavable hydrogel coated upconverting nanoparticles: a multifunctional theranostic platform for NIR imaging and on-demand macromolecular delivery. Journal of the American Chemical Society, 2016,138(3):1078-1083.
doi: 10.1021/jacs.5b12357 pmid: 26708288
[51]   Montoto A H, Llopis-Lorente A, Gorbe M, et al. Janus gold nanostars-mesoporous silica nanoparticles for NIR light-triggered drug delivery. Chemistry A European Journal, 2019,25(36):8471-8478.
doi: 10.1002/chem.v25.36
[52]   Gao H, Bi Y, Chen J, et al. Near-infrared light-triggered switchable nanoparticles for targeted chemo/photothermal cancer therapy. ACS Applied Materials & Interfaces, 2016,8(24):15103-15112.
doi: 10.1021/acsami.6b03905 pmid: 27227416
[53]   Wang C, Ma X, Ye S, et al. Protamine functionalized single-walled carbon nanotubes for stem cell labeling and in vivo Raman/magnetic resonance/photoacoustic triple-modal imaging. Advanced Functional Materials, 2012,22(11):2363-2375.
[54]   Zheng M, Li Y, Liu S, et al. One-pot to synthesize multifunctional carbon dots for near infrared fluorescence imaging and photothermal cancer therapy. ACS Applied Materials & Interfaces, 2016,8(36):23533-23541.
doi: 10.1021/acsami.6b07453 pmid: 27558196
[55]   Wang X, Cao D, Tang X, et al. Coating carbon nanosphere with patchy gold for production of highly efficient photothermal agent. ACS Applied Materials & Interfaces, 2016,8(30):19321-19332.
doi: 10.1021/acsami.6b05550 pmid: 27351062
[56]   Liu J, Wickramaratne N P, Qiao S Z, et al. Molecular-based design and emerging applications of nanoporous carbon spheres. Nature Materials, 2015,14(8):763-774.
doi: 10.1038/nmat4317 pmid: 26201892
[57]   Zhang Q, Zhang L, Li S, et al. Designed synthesis of Au/Fe3O4@C Janus nanoparticles for Dualmodal imaging and actively targeted chemo-photothermal synergistic therapy of cancer cells. Chemistry, 2017,23(68):17242-17248.
doi: 10.1002/chem.201703498 pmid: 28845884
[58]   Park K S, Ni Z, C?té A P, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci U S A, 2006,103(27):10186-10191.
doi: 10.1073/pnas.0602439103 pmid: 16798880
[59]   Sun C Y, Qin C, Wang X L, et al. Zeolitic imidazolate framework-8 as efficient pH-sensitive drug delivery vehicle. Dalton Transactions, 2012,41(23):6906-6909.
pmid: 22580798
[60]   Shearier E, Cheng P, Zhu Z, et al. Surface defection reduces cytotoxicity of Zn(2-methylimidazole)2 (ZIF-8) without compromising its drug delivery capacity. RSC Adv, 2015,6(5):4128-4135.
doi: 10.1039/C5RA24336J pmid: 26998256
[61]   Wang X, Miao D, Liang X, et al. Nanocapsules engineered from polyhedral ZIF-8 templates for bone-targeted hydrophobic drug delivery. Biomater, 2017,5(4):658-662.
[62]   Chowdhuri A R, Laha D, Pal S, et al. One-pot synthesis of folic acid encapsulated upconversion nanoscale metal organic frameworks for targeting, imaging and pH responsive drug release. Dalton Transactions, 2016,45(45):18120-18132.
doi: 10.1039/c6dt03237k pmid: 27785489
[63]   Villajos, J A, Orcajo G, Martos C, et al. Co/Ni mixed-metal sited MOF-74 material as hydrogen adsorbent. International Journal of Hydrogen Energy, 2015,40(15):5346-5352.
[64]   Jiang P C, Hu Y L, Li G K, et al. Biocompatible Au@Ag nanorod@ZIF-8 core-shell nanoparticles for surface-enhanced Raman scattering imaging and drug delivery. Talanta, 2019,200:212-217.DOI: 10.1016/j.talanta.2019.03.057.
doi: 10.1016/j.talanta.2019.03.057 pmid: 31036175
[65]   Li X, Zhou L, Wei Y, et al. Anisotropic growth-induced synthesis of dual-compartment Janus mesoporous silica nanoparticles for bimodal triggered drugs delivery. Journal of the American Chemical Society, 2014,136(42):15086-15092.
doi: 10.1021/ja508733r pmid: 25251874
[1] LV Hui-zhong,ZHAO Chen-chen,ZHU Lian,XU Na. Progress of Using Exosome for Drug Targeted Delivery in Tumor Therapy[J]. China Biotechnology, 2021, 41(5): 79-86.
[2] HU Sheng-tao,ZHANG Er-bing,LIN Ye,ZHANG Feng,HUANG Dan,SONG Hou-pan,LIU Bin,CAI Xiong. Research Advances on the Therapy of Rheumatoid Arthritis with the Nanotechnology Based on Transdermal Drug Delivery System[J]. China Biotechnology, 2021, 41(2/3): 98-106.
[3] DENG Rui,ZENG Jia-li,LU Xue-mei. Screening and Structure-activity Relationship Analysis of Anti-tumor Derived Peptides Based on Musca domestica cecropin[J]. China Biotechnology, 2021, 41(11): 14-22.
[4] XIAO Yun-xi,ZHANG Jun-he,YANG Wen-wen,CHENG Hong-wei. Research Progress of Human Diploid Cells for Vaccine Production[J]. China Biotechnology, 2021, 41(11): 74-81.
[5] WU You,XIN Lin. New Drug Delivery System: Delivery of Exosomes as Drug Carriers[J]. China Biotechnology, 2020, 40(9): 28-35.
[6] TONG Mei,CHENG Yong-qing,LIU Jin-yi,XU Chen. Construction of a Strain for Promoting Production of Small Molecule Antibodies in Periplasmic Space of Escherichia coli[J]. China Biotechnology, 2020, 40(5): 48-56.
[7] CHENG Ping,ZHANG Yang-zi,MA Xuan,CHEN Xu,ZHU Bao-qing,XU Wen-tao. Properties and Applications of Stimuli-Responsive DNA Hydrogels[J]. China Biotechnology, 2020, 40(3): 132-143.
[8] CHEN Chun-lin,QIN Song,SONG Wan-lin,LIU Zhi-dan,LIU Zheng-yi. Progress on Biological Preparation of Alginate Oligosaccharides[J]. China Biotechnology, 2020, 40(10): 85-95.
[9] Wen-jie CAO,Xiang-yuan XIONG,Yan-chun GONG,Zi-ling LI,Yu-ping LI. The Application of Polymersomes in Drug Delivery System[J]. China Biotechnology, 2019, 39(6): 62-72.
[10] Jia-yue XU,Zi-qian LI,Ge ZHANG. Advanced in Research Dengue Virus 3'UTRΔ30 Series Vaccines[J]. China Biotechnology, 2019, 39(3): 97-104.
[11] LU Zhong-teng,HU Gao-wei. Identification Methods of Novel Cell Penetrating Peptides and Application in Antitumor Therapy[J]. China Biotechnology, 2019, 39(12): 50-55.
[12] Si LI,Yi-zhou ZHAI,Yu-ting LU,Fu-jun WANG,Jian ZHAO. The Optimization of A Novel Human-derived Cell-penetrating Peptide Used for Anti-cancer Treatment[J]. China Biotechnology, 2018, 38(7): 40-49.
[13] Li ZHANG,Juan DING,Yu-cheng HAO,Cheng YE,Yang PU. Identification of a Marine Microalgae and Optimization of Protoplast Preparation[J]. China Biotechnology, 2018, 38(11): 42-50.
[14] Yang-ling ZHANG,Yuan WANG,Ge ZHANG. Advances in Research on Ebola Virus Vaccine: rVSV-ZEBOV[J]. China Biotechnology, 2018, 38(1): 51-56.
[15] LIU Li-ping, ZHANG Chun, YIN Shuang, WANG Qi, ZHANG Yao, YU Rong, LIU Yong-dong, SU Zhi-guo. Design, Preparation, Characterization and Preliminary Evaluation of an Albumin Binding Peptide-Doxorubicin Conjugate[J]. China Biotechnology, 2017, 37(4): 68-75.