Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (12): 67-74    DOI: 10.13523/j.cb.2007017
    
CAR-T Therapy Targeting Tumor Microenvironment
XIAO Xue-jun1,TANG Qi2,XINHUA Nabi1,**()
1 Department of Pharmacology, Xinjiang Medical University, Urumqi 830000, China
2 National Health Commission Key Laboratory of Antibody Technique,Naniing Medical University, Nanjing 210029, China
Download: HTML   PDF(18917KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Cancer is still a major problem threatening human health in recent years. With the development of medicine, besides the traditional methods of cancer treatment: surgery, radiotherapy, chemotherapy, immunotherapy can also be used. At present, cancer immunotherapy has been widely concerned, but there are many limitations in its application. For example, PD-1 / PD-L1 inhibitors are found to have acquired drug resistance in the process of application. Therefore, cellular immunotherapy (chimeric antigen receptor T cell, CAR-T) emerges as the times require, becoming a new treatment method to make up for the defects of immune checkpoint inhibitors (ICIs) and monoclonal antibody drugs. Through briefly introduces the emergence and application of CAR-T immunity therapy and the research progress on TME related targets, providing certain ideas for the follow-up research.



Key wordsTumor      Targeted drug      CAR-T      Tumor microenvironment     
Received: 13 July 2020      Published: 14 January 2021
ZTFLH:  Q819  
Corresponding Authors: Nabi XINHUA     E-mail: 2476320280@qq.com
Cite this article:

XIAO Xue-jun,TANG Qi,XINHUA Nabi. CAR-T Therapy Targeting Tumor Microenvironment. China Biotechnology, 2020, 40(12): 67-74.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2007017     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I12/67

Fig.1 Cells of tumor microenvironment
Fig.2 Structural optimization of CAR-T cells
Fig.3 Effect of secretory target of CAR-T on tumor microenvironment
[1]   Walter A. Global, regional, and national burden of Parkinson’s disease, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurology, 2018,17(11):939-953.
doi: 10.1016/S1474-4422(18)30295-3 pmid: 30287051
[2]   张敏, 李佳, 余德超. 靶向抗肿瘤单克隆抗体应用的现状和展望. 中国肿瘤生物治疗杂志, 2017,24(9):929-937.
[2]   Zhang M, Li J, Yu D C. Application status and prospect of targeted anti-tumor monoclonal antibodies. Chinese Journal of Cancer Biotherapy, 2017,24(9):929-937.
[3]   王征旭. 基因修饰T细胞技术进展及临床应用. 北京: 化学工业出版社, 2018: 17.
[3]   Wang Z X. Progress and clinical application of gene modified T cell technology. Beijing: Chemical Industry Press, 2018: 17.
[4]   王泽凡, 兰霞斌, 温庆良, 等. CAR-T在实体瘤中的研究进展. 中国肿瘤, 2019,28(9):699-704.
[4]   Wang Z F, Lan X B, Wen Q L, et al. Research progress of CAR-T in solid tumors. Chinese Oncology, 2019,28(9):699-704.
[5]   Hanahan D, Weinberg R A. Hallmarks of cancer: the next generation. Cell, 2011,144(5):646-674.
doi: 10.1016/j.cell.2011.02.013 pmid: 21376230
[6]   Hirata E, Sahai E. Tumor microenvironment and differential responses to therapy. Cold Spring Harb Perspect Med, 2017,7(7):a026781.
[7]   Vaupel P, Multhoff G. Hypoxia-/HIF-1α-driven factors of the tumor microenvironment impeding antitumor immune responses and promoting malignant progression. Adv Exp Med Biol, 2018,1072(8):171-175.
[8]   Tang S, Yuen W, Kaur I. Capturing instructive cues of tissue microenvironment by silica bioreplication. Acta Biomater. 2019,19:1742-7061.
[9]   Wu T, Dai Y. Tumor microenvironment and therapeutic response. Cancer Letters, 2017,387(9):61-68.
[10]   Stambrook P, Maher J, Farzaneh F. Cancer immunotherapy: whence and whither. Mol Cancer Res, 2017,15(6):635-650.
doi: 10.1158/1541-7786.MCR-16-0427 pmid: 28356330
[11]   Sanmamed M F, Chen L. A Paradigm shift in cancer immunotherapy: from enhancement to normalization. Cell, 2018, 4;175(2):313-326.
[12]   Zhang Y, Du W, Chen Z L, et al. Upregulation of PD-L1 by SPP1 mediates macrophage polarization and facilitates immune escape in lung adenocarcinoma. Exp Cell Res, 2017,359(2):449-457.
doi: 10.1016/j.yexcr.2017.08.028 pmid: 28830685
[13]   Chen L, Han X. Anti-PD-1/PD-L1 therapy of human cancer: past, present, and future. J Clin Invest, 2015,125(9):3384-3391.
pmid: 26325035
[14]   Zou W, Wolchok J D, Chen L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. Sci Transl Med, 2016,8(328):328-324.
[15]   Wang Z, Wu Z, Liu Y, et al. New development in CAR-T cell therapy. J Hematol Oncol, 2017,10(1):53.
doi: 10.1186/s13045-017-0423-1 pmid: 28222796
[16]   Newick K, O’Brien S, Moon E, et al. CAR T cell therapy for solid tumors. Annu Rev Med, 2017,14(68):139-152.
[17]   Oldham R A A, Medin J A. Practical considerations for chimeric antigen receptor design and delivery. Expert Opin Biol Ther, 2017,17(8):961-978.
doi: 10.1080/14712598.2017.1339687 pmid: 28586264
[18]   Suarez E R, Chang D K, Sun J, et al. Chimeric antigen receptor T cells secreting anti-PD-L1 antibodies more effectively regress renal cell carcinoma in a humanized mouse model. Oncotarget, 2016,7(23):34341-34355.
doi: 10.18632/oncotarget.9114 pmid: 27145284
[19]   Craddock J A, Lu A, Bear A, et al. Enhanced tumor trafficking of GD2 chimeric antigen receptor cells by expression of the chemokine receptor CCR2b. J immunother, 2010,33(8):780-788.
doi: 10.1097/CJI.0b013e3181ee6675 pmid: 20842059
[20]   Newick K, O’Brien S, Sun J, et al. Augmentation of CAR T-cell trafficking and antitumor efficacy by blocking protein kinase A localization. Cancer Immunology Research, 2016,4(6):541-551.
pmid: 27045023
[21]   Wallace A, Kapoor V, Sun J, et al. Transforming growth factor-beta receptor blockade augments the effectiveness of adoptive T cell therapy of established solid cancers. Clinical Cancer Research, 2008,14(12):3966-3974.
doi: 10.1158/1078-0432.CCR-08-0356 pmid: 18559619
[22]   Yao X, Ahmadzadeh M, Lu Y C, et al. Levels of perapheral CD4+FoxP3+regulatory T cells are negatively associated with clinical response to adoptive immunotherapy of human cancer. Blood, 2012,119(24):5688-5696.
doi: 10.1182/blood-2011-10-386482 pmid: 22555974
[23]   John L B, Devaud C, Duong C P, et al. Anti-PD-1 antibody therapy potently enhances the eradication of established tumors by gene-modifed T cells. Clin Cancer Res, 2013,19(20):5636-5646.
doi: 10.1158/1078-0432.CCR-13-0458 pmid: 23873688
[24]   Hou A J, Chang Z L, Lorenzini M H, et al. TGF-β-responsive CAR-T cells promote anti-tumor immune function. Bioeng Transl Med, 2018,3(2):75-86.
doi: 10.1002/btm2.10097 pmid: 30065964
[25]   Harlin H, Meng Y, Peterson A C, et al. Chemokine expression in melanoma metastases associated with CD8+ T-cell recruitment. Cancer Res, 2019,69(7):3077-85.
doi: 10.1158/0008-5472.CAN-08-2281 pmid: 19293190
[26]   Craddock J A, Lu A, Bear A, et al. Enhanced tumor trafficking of GD2 chimeric antigen receptor T cells by expression of the chemokine receptor CCR2b. Immunother, 2010,33(8):780-88.
[27]   Moon E K, Carpenito C, Sun J, et al. Expression of a functional CCR2 receptor enhances tumor localization and tumor eradication by retargeted human T cells expressing a mesothelin-specific chimeric antibody receptor. Clin Cancer Res, 2011,17(14):4719-4730.
pmid: 21610146
[28]   Choi J, Ahn S S, Lim Y, et al. Inhibitory effect of alisma canal- iculatum ethanolic extract on NF-κB-dependent CXCR3 and CXCL10 expression in TNFα-exposed MDA-MB-231 breast cancer cells. Int J Mol Sci, 2018,19(9):2607.
doi: 10.3390/ijms19092607
[29]   Nie Y, Chen J N, Huang D, et al. Tumor -associated macropha- ges promote malignant progression of breast phyllodes tumors by inducing myofibroblast differentiation. Cancer Res, 2017,77(13):3605-3618.
doi: 10.1158/0008-5472.CAN-16-2709 pmid: 28512246
[30]   She L, Qin Y, Wang J, et al. Tumor-associated macrophages derived CCL18 promotes metastasis in squamous cell carcinoma of the head and neck. Cancer Cell Int, 2018,28(18):120.
[31]   Lin L, Chen Y S, Yao Y D, et al. CCL18 from tumor-associated macrophages promotes angiogenesis in breast cancer. Oncotarget, 2015,6(33):34758-34773.
doi: 10.18632/oncotarget.5325 pmid: 26416449
[32]   Liu Y, Zheng H, Li Q, et al. Discovery of CCL18 antagonist blocking breast cancer metastasis. Clin Exp Metastasis, 2019,36(3):243-255.
doi: 10.1007/s10585-019-09965-2 pmid: 31062206
[33]   Highfill S L, Cui Y, Giles A J, et al. Disruption of CXCR2-medi- ated MDSC tumor trafficking enhances anti-PD1 efficacy. Sci Transl Med, 2014,6(237):237-67.
[34]   Su S, Chen J, Yao H, et al. CD10+GPR77+cancer-associated fibroblasts promote cancer formation and chemoresistance by sustaining cancer stemness. Cell, 2018,172(4):1-16.
[35]   Yushu J X, Michael D. Nanobody-based CAR T cells that target the tumor microenvironment inhibit the growth of solid tumors in immunocompetent mice. Proc Natl Acad Sci U S A, 2019,116(16):7624-7631.
doi: 10.1073/pnas.1817147116 pmid: 30936321
[36]   Wang W, Ma Y, Li J, et al. Specificity redirection by CAR with human VEGFR-1 affinity endows T lymphocytes with tumor-killing ability and anti-angiogenic potency. Gene Ther, 2013,20(10):970-978.
doi: 10.1038/gt.2013.19 pmid: 23636245
[37]   Tian Y G, Li Y L, Shao Y P, et al. Gene modification strategies for next-generation CAR T cells against solid cancers. Journal of Hematology & Oncology, 2020,13:54.
doi: 10.1186/s13045-020-00890-6 pmid: 32423475
[38]   杨莹, 白春梅, 孙昭. 抗PD-1/PD-L1药物治疗肿瘤耐药机制研究进展. 癌症进展, 2017,15(12):1365-1374.
[38]   Yang Y, Bai C M, Sun Z. Research progress on drug resistance mechanism of anti PD-1 / PD-L1 drugs in the treatment of tumor. Cancer progress, 2017,15(12):1365-1374.
[39]   韩笑, 林沛楠, 王标, 等. PD-1 / PD- L1通路及其抗体耐药机制的研究进展. 临床肿瘤学杂志, 2018,23(6):563-568.
[39]   Han X, Lin P N, Wang B, et al. Research progress of PD-1 / PD-L1 pathway and its antibody resistance mechanism. Journal of Clinical Oncology, 2018,23(6):563-568.
[40]   Bachy E, Coiffier B. Anti-PD1 antibody: a new approach to treatment of lymphomas. Lancet Oncol, 2014,15(1):7-8.
doi: 10.1016/S1470-2045(13)70587-4 pmid: 24332517
[41]   Patsoukis N, Brown J, Petkova V, et al. Selective effects of PD-1 on Akt and Ras pathways regulate molecular components of the cell cycle and inhibit T cell proliferation. Sci Signal, 2012,5(230):46.
[42]   Jenkins R W, Barbie D A, Flaherty K T. Mechanisms of resistance to immune checkpoint inhibitors. Br J Cancer, 2018,118(1):9-16.
doi: 10.1038/bjc.2017.434 pmid: 29319049
[43]   Topalian S L, Hodi F S, Brahmer J R, et al. Safety, activity, and immune correlates of anti-PD-L1 antibody in cancer. N Engl J Med, 2012,336(26):2443-2454.
[44]   Héninger E, Krueger T E, Lang J M. Augmenting antitumor im- mune responses with epigenetic modifying agents. Front Immunol, 2015,4(6):29.
[45]   Kim F B, Tom G, Alexander R, et al. Siglecs: A journey through the evolution of sialic acid-binding immunoglobulin-type lectins. Developmental and Comparative Immunology, 2018,86:219-231.
doi: 10.1016/j.dci.2018.05.008 pmid: 29751010
[46]   Klaas M, Crocker P R. Sialoadhesin in recognition of self and non-self. Semin Immunopathol, 2012,34:353-64.
doi: 10.1007/s00281-012-0310-3 pmid: 22450957
[47]   Paulson J C, Macauley M S, Kawasaki N. Siglecs as sensors of self in innate and adaptive immune responses. Ann N Y Acad Sci, 2012,1253:37-48.
doi: 10.1111/j.1749-6632.2011.06362.x pmid: 22288608
[48]   Padler-Karavani V, Hurtado-Ziola N, Chang Y C, et al. Rapid evolution of binding specificities and expression patterns of inhibitory CD33-related Siglecs in primates. FASEB J, 2014,28:1280-1293.
doi: 10.1096/fj.13-241497 pmid: 24308974
[49]   Adams O J, Stanczak M A, von Gunten S, et al. Targeting sialic acid-Siglec interactions to reverse immune suppression in cancer. Glycobiology, 2018,28(9):640-647.
doi: 10.1093/glycob/cwx108 pmid: 29309569
[50]   Matthew S, Macauley , Paul R, et al. Siglec-mediated regulation of immune cell function in disease. Nature Reviews Immunology, 2014,14(10):653-666.
doi: 10.1038/nri3737 pmid: 25234143
[51]   Schwarz F, Fong J J, Varki A. Human-specific evolutionary changes in the biology of siglecs. Adv Exp Med Biol, 2015,842:1-16.
doi: 10.1007/978-3-319-11280-0_1 pmid: 25408333
[52]   Wang J, Sun J, Liu L N, et al. Siglec-15 as an immune suppressor and potential target for normalization cancer immunotherapy. Nat. Med, 2019,25(4):656-666.
[1] ZHAO Meng-ze,LI Feng-zhi,WANG Peng-yin,LI Jian,XU Han-mei. Research Progress of Dual-target Blocking Therapy of PD-L1 and VEGF[J]. China Biotechnology, 2021, 41(9): 71-77.
[2] LV Hui-zhong,ZHAO Chen-chen,ZHU Lian,XU Na. Progress of Using Exosome for Drug Targeted Delivery in Tumor Therapy[J]. China Biotechnology, 2021, 41(5): 79-86.
[3] YUAN Bo,WANG Jie-wen,KANG Guang-bo,HUANG He. Research Progress and Application of Bispecific Nanobody[J]. China Biotechnology, 2021, 41(2/3): 78-88.
[4] DENG Rui,ZENG Jia-li,LU Xue-mei. Screening and Structure-activity Relationship Analysis of Anti-tumor Derived Peptides Based on Musca domestica cecropin[J]. China Biotechnology, 2021, 41(11): 14-22.
[5] LIN Shi-xin,LIU Dong-chen,LEI Yun,XIONG Sheng,XIE Qiu-ling. Screening, Expression and Specificity Detection of Anti-TNF-α Nanobody[J]. China Biotechnology, 2020, 40(7): 15-21.
[6] YANG Wei,SONG Fang-xiang,WANG Shuai,ZHANG Li,WANG Hong-xia,LI Yan. Preparation and Application of Janus Nanoparticles in Drug Delivery System[J]. China Biotechnology, 2020, 40(7): 70-81.
[7] ZHANG Bao-hui,XIONG Hua-long,ZHANG Tian-ying,YUAN Quan. Research Progress on Vesicular Stomatitis Virus-based Oncolytic Virotherapy[J]. China Biotechnology, 2020, 40(6): 53-62.
[8] TONG Mei,CHENG Yong-qing,LIU Jin-yi,XU Chen. Construction of a Strain for Promoting Production of Small Molecule Antibodies in Periplasmic Space of Escherichia coli[J]. China Biotechnology, 2020, 40(5): 48-56.
[9] DAI Qi-nan,ZHANG Jing-hong. Advances in Molecular Mechanisms Related to Tumor Multi-drug Resistance, Autophagy, DNA Repair and Tumor Stem Cells[J]. China Biotechnology, 2020, 40(4): 69-77.
[10] QIAN Ying,QIAN Chen,BAI Xiao-qing,WANG Jing-jing. Application of Adjuvant in Cancer Immunotherapy[J]. China Biotechnology, 2020, 40(3): 96-103.
[11] HE Xun,ZHANG Peng,ZHANG Jun-xiang. Progress in the Construction and Application of Organoids[J]. China Biotechnology, 2020, 40(12): 82-87.
[12] ZHU Yongzhao,TAO Jin,REN Meng-meng,XIONG Ran,HE Ya-qin,ZHOU Yu,LU Zhen-hui,DU Yong,YANG Zhi-hong. Autophagy Protects Against Apoptosis of Human Placental Mesenchymal Stem Cells of Fetal Origin Induced by Tumor Necrosis Fator-α[J]. China Biotechnology, 2019, 39(9): 62-67.
[13] LIU Yan,DAI Peng,ZHU Yun-feng. Research Progress of Exosome as Tumor Marker[J]. China Biotechnology, 2019, 39(8): 74-79.
[14] Hai-yin LV,Teng-fei WANG,Ren-jun PEI. Progress in Aptamer Based Tumor Immunotherapy[J]. China Biotechnology, 2019, 39(6): 55-61.
[15] Zhen-hu LI,Yun-fei WU,Ying PAN,Zhao-xiang REN,Xiang-chao GU,Liang TANG,Xin-zhong WANG,Juan ZHANG. The Development of Immuno-oncology Therapy and the Biomarker Research[J]. China Biotechnology, 2019, 39(2): 38-48.