Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (4): 69-77    DOI: 10.13523/j.cb.1910019
    
Advances in Molecular Mechanisms Related to Tumor Multi-drug Resistance, Autophagy, DNA Repair and Tumor Stem Cells
DAI Qi-nan1,ZHANG Jing-hong1,2,**()
1 School of Medicine, Huaqiao University, Quanzhou, Fujian 362021, China
2 Insititute of Molecular Medicine, Huaqiao University, Quanzhou, Fujian 362021, China
Download: HTML   PDF(717KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The failure of chemotherapy caused by tumor multi-drug resistance (MDR) is still a difficult point in tumor treatment. Although three generations of inhibitors have been successfully developed for MDR, targeting ATP binding cassette transporter (ABC), there are also effective methods to reverse MDR, such as MDR regulator or chemical sensitizer, multifunctional nanocarrier and RNA interference, but MDR is still a difficulty in tumor treatment due to the complexity of tumor multi-drug resistance mechanism. In this paper, we will focus on the abnormal expression of ABC transporter, The changes of DNA injury repair and apoptosis, autophagy induction and drug resistance, tumor stem cells and drug resistance were reviewed in order to provide ideas and methods for the study of MDR.



Key wordsTumor multi-drug resistance      ABC transporter      DNA damage repair      Autophagy      Tumor stem cells     
Received: 15 October 2019      Published: 18 May 2020
ZTFLH:  Q819  
Corresponding Authors: Jing-hong ZHANG     E-mail: zjh@hqu.edu.cn
Cite this article:

DAI Qi-nan,ZHANG Jing-hong. Advances in Molecular Mechanisms Related to Tumor Multi-drug Resistance, Autophagy, DNA Repair and Tumor Stem Cells. China Biotechnology, 2020, 40(4): 69-77.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.1910019     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I4/69

Fig.1 Drug resistance mechanisms associated with DNA damage repair and apoptosis
Fig.2 Molecular mechanisms related to tumor multidrug resistance and autophagy, DNA repair and CSCs
[1]   Bray F, Ferlay J, Soerjomataram I , et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018,68(6):394-424.
doi: 10.3322/caac.21492 pmid: 30207593
[2]   Cao Y, Li Z, Mao L , et al. The use of proteomic technologies to study molecular mechanisms of multidrug resistance in cancer. European Journal of Medicinal Chemistry, 2019,162:423-434.
doi: 10.1016/j.ejmech.2018.10.001 pmid: 30453249
[3]   Mohammad I S, He W, Yin L . Understanding of human ATP binding cassette superfamily and novel multidrug resistance modulators to overcome MDR. Biomedicine & Pharmacotherapy, 2018,100:335-348.
doi: 10.1016/j.biopha.2018.02.038 pmid: 29453043
[4]   De Vera A, Gupta P, Lei Z , et al. Immuno-oncology agent IPI-549 is a modulator of P-glycoprotein (P-gp, MDR1, ABCB1)-mediated multidrug resistance (MDR) in cancer: In vitro and in vivo. Cancer Letters, 2019,442:91-103.
doi: 10.1016/j.canlet.2018.10.020 pmid: 30391357
[5]   熊婷, 李丽丁 . ABC转运体介导肿瘤多药耐药机制的研究进展. 临床与病理杂志, 2017,37(1):189-193.
[5]   Xiong T, Li L . Research progress of ABC transporter mediated multidrug resistance mechanism. J Clin Pathol Res, 2017,37(1):189-193.
[6]   Liao R, Lin Y, Zhu L . Molecular pathways involved in microRNA-mediated regulation of multidrug resistance. Molecular Biology Reports, 2018,45(6):2913-2923.
doi: 10.1007/s11033-018-4358-6 pmid: 30194558
[7]   Chen J, Ding Z, Peng Y , et al. HIF-1a inhibition reverses multidrug resistance in colon cancer cells via downregulation of MDR1/P- glycoprotein. PLoS One, 2015,9(6):e98882.
doi: 10.1371/journal.pone.0098882 pmid: 24901645
[8]   Kovalchuk O, Filkowski J, Meservy J , et al. Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Molecular Cancer Therapeutics, 2008,7(7):2152-2159.
doi: 10.1158/1535-7163.MCT-08-0021 pmid: 18645025
[9]   Chen J, Tian W, Cai H , et al. Down-regulation of microRNA-200c is associated with drug resistance in human breast cancer. Medical Oncology, 2012,29(4):2527-2534.
doi: 10.1007/s12032-011-0117-4
[10]   Lu C, Shan Z, Li C , et al. MiR-129 regulates cisplatin-resistance in human gastric cancer cells by targeting P-gp. Biomedicine & Pharmacotherapy, 2017,86:450-456.
doi: 10.1016/j.biopha.2016.11.139 pmid: 28012924
[11]   Zhou H, Lin C, Zhang Y , et al. MiR-506 enhances the sensitivity of human colorectal cancer cells to oxaliplatin by suppressing MDR1/P-gp expression. Cell Proliferation, 2017,50(3):e12341.
doi: 10.1111/cpr.12341 pmid: 28217977
[12]   Chen S F, Zhang Z Y, Zhang J L . Meloxicam increases intracellular accumulation of doxorubicin via downregulation of multidrug resistance-associated protein 1 (MRP1) in A549 cells. Genetics and Molecular Research, 2015,14(4):14548-14560.
doi: 10.4238/2015.November.18.18 pmid: 26600514
[13]   Rocha G D G, Oliveira R R, Kaplan M A C , et al. 3β-Acetyl tormentic acid reverts MRP1/ABCC1 mediated cancer resistance through modulation of intracellular levels of GSH and inhibition of GST activity. European Journal of Pharmacology, 2014,741:140-149.
doi: 10.1016/j.ejphar.2014.07.054
[14]   Xu K, Liang X, Shen K , et al. MiR-297 modulates multidrug resistance in human colorectal carcinoma by down-regulating MRP-2. Biochemical Journal, 2012,446(2):291-300.
doi: 10.1042/BJ20120386 pmid: 22676135
[15]   Doyle L A, Yang W, Abruzzo L V , et al. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci U S A, 1998,95(26):15665-15670.
doi: 10.1073/pnas.95.26.15665 pmid: 9861027
[16]   Jiao X, Zhao L, Ma M , et al. MiR-181a enhances drug sensitivity in mitoxantone-resistant breast cancer cells by targeting breast cancer resistance protein (BCRP/ABCG2). Breast Cancer Research and Treatment, 2013,139(3):717-730.
doi: 10.1007/s10549-013-2607-x
[17]   Ma M, He M, Wang Y , et al. MiR-487a resensitizes mitoxantrone (MX)-resistant breast cancer cells (MCF-7/MX) to MX by targeting breast cancer resistance protein (BCRP/ABCG2). Cancer Letters, 2013,339(1):107-115.
doi: 10.1016/j.canlet.2013.07.016
[18]   Slovak M, Ho J, Cole S , et al. The LRP gene encoding a major vault protein associated with drug resistance maps proximal to MRP on chromosome 16: evidence that chromosome breakage plays a key role in MRP or LRP gene amplification. Cancer Research, 1995,55:4214-4219.
pmid: 7671223
[19]   Xiao Y, Zeng D, Liang Y , et al. Major vault protein is a direct target of Notch1 signaling and contributes to chemoresistance in triple-negative breast cancer cells. Cancer Letters, 2019, 440-441:156-167.
doi: 10.1016/j.canlet.2018.09.031 pmid: 30336197
[20]   Torgovnick A, Schumacher B . DNA repair mechanisms in cancer development and therapy. Frontiers in Genetics, 2015,6.
doi: 10.3389/fgene.2015.00157 pmid: 25954303
[21]   Naghizadeh S, Mohammadi A, Baradaran B , et al. Overcoming multiple drug resistance in lung cancer using siRNA targeted therapy. Gene, 2019,714:143972.
doi: 10.1016/j.gene.2019.143972 pmid: 31301483
[22]   Assaraf Y G, Brozovic A, Gonçalves A C , et al. The multi-factorial nature of clinical multidrug resistance in cancer. Drug Resistance Updates, 2019,46:100645.
doi: 10.1016/j.drup.2019.100645 pmid: 31585396
[23]   Heyza J R, Arora S, Zhang H , et al. Targeting the DNA repair endonuclease ERCC1-XPF with green tea polyphenol epigallocatechin-3-gallate (EGCG) and its prodrug to enhance cisplatin efficacy in human cancer cells. Nutrients, 2018,10(11):1644.
doi: 10.3390/nu10111644 pmid: 30400270
[24]   Williamson E A, Damiani L, Leitao A , et al. Targeting the transposase domain of the DNA repair component metnase to enhance chemotherapy. Cancer Research, 2012,72(23):6200-6208.
doi: 10.1158/0008-5472.CAN-12-0313
[25]   Chen X, Li Y, Ouyang T , et al. Associations between RAD51D germline mutations and breast cancer risk and survival in BRCA1/2-negative breast cancers. Annals of Oncology, 2018,29(10):2046-2051.
doi: 10.1093/annonc/mdy338 pmid: 30165555
[26]   Hou J, Zhao L, Zhang D , et al. Prognostic value of mismatch repair genes for patients with colorectal cancer: meta-analysis. Technology in Cancer Research & Treatment, 2018,17:1077076155.
doi: 10.1177/1533033818808507 pmid: 30411662
[27]   Ashworth A, Lord C J . Synthetic lethal therapies for cancer: what’s next after PARP inhibitors? Nat Rev Clin Oncol, 2018,15(9):564-576.
doi: 10.1038/s41571-018-0055-6 pmid: 29955114
[28]   Oza A, Tinker A, Oaknin A , et al. Antitumor activity and safety of the PARP inhibitor rucaparib in patients with high-grade ovarian carcinoma and a germline or somatic BRCA1 or BRCA2 mutation: integrated analysis of data from study 10 and ARIEL2. Gynecologic Oncology, 2017,147:267-275.
doi: 10.1016/j.ygyno.2017.08.022 pmid: 28882436
[29]   Pettitt S, Lord C . Dissecting PARP inhibitor resistance with functional genomics. Current Opinion in Genetics & Development, 2019,54:55-63.
doi: 10.1016/j.gde.2019.03.001 pmid: 30954761
[30]   Madariaga A, Lheureux S, Oza A . Tailoring ovarian cancer treatment: implications of BRCA1/2 mutations. Cancers, 2019,11(3):416.
doi: 10.3390/cancers11030416 pmid: 30909618
[31]   Zaman S, Wang R, Gandhi V . Targeting the apoptosis pathway in hematologic malignancies. Leukemia & Lymphoma, 2014,55(9):1980-1992.
doi: 10.3109/10428194.2013.855307 pmid: 24295132
[32]   Huang Z, Lei X, Zhong M , et al. Bcl-2 small interfering RNA sensitizes cisplatin-resistant human lung adenocarcinoma A549/DDP cell to cisplatin and diallyl disulfide. Acta Biochimica et Biophysica Sinica, 2007,39(11):835-843.
doi: 10.1111/j.1745-7270.2007.00356.x pmid: 17989874
[33]   Zou M, Xia S, Zhuang L , et al. Knockdown of the Bcl-2 gene increases sensitivity to EGFR tyrosine kinase inhibitors in the H1975 lung cancer cell line harboring T790M mutation. Int J Oncol, 2013,42(6):2094-2102.
doi: 10.3892/ijo.2013.1895
[34]   Zhang J, Liu J, Li H , et al. Beta-catenin signaling pathway regulates cisplatin resistance in lung adenocarcinoma cells by upregulating Bcl-xl. Mol Med Rep, 2016,13(3):2543-2551.
doi: 10.3892/mmr.2016.4882 pmid: 26860078
[35]   Dong X, Lin D, Low C , et al. Elevated expression of BIRC6 protein in non-small-cell lung cancers is associated with cancer recurrence and chemoresistance. Journal of Thoracic Oncology, 2013,8(2):161-170.
doi: 10.1097/JTO.0b013e31827d5237 pmid: 23287853
[36]   Crnkovic-Mertens I, Muley T, Meister M , et al. The anti-apoptotic livin gene is an important determinant for the apoptotic resistance of non-small cell lung cancer cells. Lung Cancer, 2006,54(2):135-142.
doi: 10.1016/j.lungcan.2006.07.018 pmid: 16965834
[37]   Yan B . Research progress on livin protein: an inhibitor of apoptosis. Molecular and Cellular Biochemistry, 2011,357(1-2):39-45.
doi: 10.1007/s11010-011-0873-7
[38]   Sameiyan E, Hayes A W, Karimi G . The effect of medicinal plants on multiple drug resistance through autophagy: A review of in vitro studies. European Journal of Pharmacology, 2019,852:244-253.
doi: 10.1016/j.ejphar.2019.04.001 pmid: 30965056
[39]   Li X, Zhou Y, Li Y , et al. Autophagy: A novel mechanism of chemoresistance in cancers. Biomedicine & Pharmacotherapy, 2019,119:109415.
doi: 10.1016/j.biopha.2019.109415 pmid: 31514065
[40]   Izdebska M, Zielińska W, Hanas-Wisniewska M , et al. Involvement of actin in autophagy and autophagy-dependent multidrug resistance in cancer. Cancers, 2019,11(8):1209.
doi: 10.3390/cancers11081209 pmid: 31434275
[41]   Shuhua W, Chenbo S, Yangyang L , et al. Autophagy-related genes raptor, rictor, and beclin1 expression and relationship with multidrug resistance in colorectal carcinoma. Human Pathology, 2015,46(11):1752-1759.
doi: 10.1016/j.humpath.2015.07.016 pmid: 26363527
[42]   An Y, Zhang Z, Shang Y , et al. MiR-23b-3p regulates the chemoresistance of gastric cancer cells by targeting ATG12 and HMGB2. Cell Death & Disease, 2015,6(5):e1766.
doi: 10.1038/cddis.2015.123 pmid: 25996293
[43]   Ge J, Chen Z, Huang J , et al. Upregulation of autophagy-related gene-5 (ATG-5) is associated with chemoresistance in human gastric cancer. PLoS One, 2014,9(10):e110293.
doi: 10.1371/journal.pone.0110293 pmid: 25329677
[44]   Chittaranjan S, Bortnik S, Dragowska W H , et al. Autophagy inhibition augments the anticancer effects of epirubicin treatment in anthracycline-sensitive and resistant triple-negative breast cancer. Clinical Cancer Research, 2014,20(12):3159-3173.
doi: 10.1158/1078-0432.CCR-13-2060
[45]   Li J, Cheng C, Yang C , et al. Dual inhibitor of phosphoinositide 3-kinase/mammalian target of rapamycin NVP-BEZ235 effectively inhibits cisplatin-resistant urothelial cancer cell growth through autophagic flux. Toxicology Letters, 2013,220(3):267-276.
doi: 10.1016/j.toxlet.2013.04.021 pmid: 23651616
[46]   Zhang Q, Yang W, Man N , et al. Autophagy-mediated chemosensitization in cancer cells by fullerene C60 nanocrystal. Autophagy, 2009,5(8):1107-1117.
doi: 10.4161/auto.5.8.9842 pmid: 19786831
[47]   Wei P, Zhang L, Lu Y , et al. C60(Nd) nanoparticles enhance chemotherapeutic susceptibility of cancer cells by modulation of autophagy. Nanotechnology, 2010,21(49):495101.
doi: 10.1088/0957-4484/21/49/495101 pmid: 21071824
[48]   Liang X H, Kleeman L K, Jiang H H , et al. Protection against fatal sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. Journal of Virology, 1998,72(11):8586-8596.
pmid: 9765397
[49]   Dinkova-Kostova A T, Baird L, Holmström K M , et al. The spatiotemporal regulation of the Keap1-Nrf2 pathway and its importance in cellular bioenergetics. Biochemical Society Transactions, 2015,43(4):602-610.
doi: 10.1042/BST20150003 pmid: 26551700
[50]   Park J S, Kang D H, Bae S H . p62 prevents carbonyl cyanide m-chlorophenyl hydrazine (CCCP)-induced apoptotic cell death by activating Nrf2. Biochemical and Biophysical Research Communications, 2015,464(4):1139-1144.
doi: 10.1016/j.bbrc.2015.07.093 pmid: 26208452
[51]   Shen J, Chen Y, Jia Y , et al. Reverse effect of curcumin on CDDP-induced drug-resistance via Keap1/p62-Nrf2 signaling in A549/CDDP cell. Asian Pacific Journal of Tropical Medicine, 2017,10(12):1190-1196.
doi: 10.1016/j.apjtm.2017.10.028 pmid: 29268977
[52]   Feng Z . p53 regulation of the IGF-1/AKT/mTOR pathways and the endosomal compartment. Cold Spring Harbor Perspectives in Biology, 2010,2(2):a1057.
doi: 10.1101/cshperspect.a001057 pmid: 20182617
[53]   Sui X, Jin L, Huang X , et al. p53 signaling and autophagy in cancer: A revolutionary strategy could be developed for cancer treatment. Autophagy, 2011,7(6):565-571.
doi: 10.4161/auto.7.6.14073
[54]   Thomas A, Giesler T, White E . p53 mediates bcl-2 phosphorylation and apoptosis via activation of the Cdc42/JNK1 pathway. Oncogene, 2000,19(46):5259-5269.
doi: 10.1038/sj.onc.1203895 pmid: 11077443
[55]   Dean M . ABC transporters, drug resistance, and cancer stem cells. Journal of Mammary Gland Biology and Neoplasia, 2009,14(1):3-9.
doi: 10.1007/s10911-009-9109-9
[56]   Resetkova E, Resetkova E, Reis-Filho J S , et al. Prognostic impact of ALDH1 in breast cancer: a story of stem cells and tumor microenvironment. Breast Cancer Research and Treatment, 2010,123(1):97-108.
doi: 10.1007/s10549-009-0619-3
[57]   Nassar D, Blanpain C . Cancer stem cells: basic concepts and therapeutic implications. Annual Review of Pathology: Mechanisms of Disease, 2016,11(1):47-76.
doi: 10.1146/annurev-pathol-012615-044438
[58]   Todaro M, Francipane M G, Medema J P , et al. Colon cancer stem cells: promise of targeted therapy. Gastroenterology, 2010,138(6):2151-2162.
doi: 10.1053/j.gastro.2009.12.063 pmid: 20420952
[59]   Peitzsch C, Kurth I, Kunz-Schughart L , et al. Discovery of the cancer stem cell related determinants of radioresistance. Radiotherapy and Oncology, 2013,108(3):378-387.
doi: 10.1016/j.radonc.2013.06.003
[60]   Karamboulas C, Ailles L . Developmental signaling pathways in cancer stem cells of solid tumors. Biochimica et Biophysica Acta (BBA) - General Subjects, 2013,1830(2):2481-2495.
doi: 10.1016/j.bbagen.2012.11.008 pmid: 23196196
[61]   Roca M S, Di Gennaro E, Budillon A . Implication for cancer stem cells in solid cancer chemo-resistance: promising therapeutic strategies based on the use of HDAC inhibitors. Journal of clinical medicine, 2019,8(7):912.
doi: 10.3390/jcm8070912 pmid: 31247937
[62]   Du F, Zhou Q, Sun W , et al. Targeting cancer stem cells in drug discovery: current state and future perspectives. World J Stem Cells, 2019,11(7):398-420.
doi: 10.4252/wjsc.v11.i7.398 pmid: 31396368
[63]   Huang L, Huang X, Li X , et al. Entinostat reverses cisplatin resistance in esophageal squamous cell carcinoma via down-regulation of multidrug resistance gene 1. Cancer Letters, 2018,414:294-300.
doi: 10.1016/j.canlet.2017.10.023 pmid: 29107111
[64]   Zhao G, Wang G, Bai H , et al. Targeted inhibition of HDAC8 increases the doxorubicin sensitivity of neuroblastoma cells via up regulation of miR-137. European Journal of Pharmacology, 2017,802:20-26.
doi: 10.1016/j.ejphar.2017.02.035 pmid: 28223126
[65]   To K K, Tong W, Fu L . Reversal of platinum drug resistance by the histone deacetylase inhibitor belinostat. Lung Cancer, 2017,103:58-65.
doi: 10.1016/j.lungcan.2016.11.019 pmid: 28024697
[66]   Di Gennaro E, Bruzzese F, Pepe S , et al. Modulation of thymidilate synthase and p53 expression by HDAC inhibitor vorinostat resulted in synergistic antitumor effect in combination with 5FU or raltitrexed. Cancer Biology & Therapy, 2009,8(9):782-791.
doi: 10.4161/cbt.8.9.8118 pmid: 19270508
[67]   Wang Z, Tang F, Hu P , et al. HDAC6 promotes cell proliferation and confers resistance to gefitinib in lung adenocarcinoma. Oncology Reports, 2016,36(1):589-597.
doi: 10.3892/or.2016.4811 pmid: 27221381
[68]   Krug L, Kindler H, Calvert H , et al. Vorinostat in patients with advanced malignant pleural mesothelioma who have progressed on previous chemotherapy (VANTAGE-014): a phase 3, double-blind, randomized, placebo-controlled trial. Lancet Oncology, 2015,16(4):447-456.
doi: 10.1016/S1470-2045(15)70056-2 pmid: 25800891
[69]   Suraweera A, O Byrne K J, Richard D J . Combination therapy with histone deacetylase inhibitors (HDACi) for the treatment of cancer: achieving the full therapeutic potential of HDACi. Frontiers in Oncology, 2018,8.
doi: 10.3389/fonc.2018.00092 pmid: 29651407
[70]   Ramalingam S S, Maitland M L, Frankel P , et al. Carboplatin and paclitaxel in combination with either vorinostat or placebo for first-line therapy of advanced non-small-cell lung cancer. Journal of Clinical Oncology, 2010,28(1):56-62.
doi: 10.1200/JCO.2009.24.9094 pmid: 19933908
[1] LI Xiao-jin,LI Yan-meng,LI Zhen-kun,XU An-jian,YANG Xiao-xi,HUANG Jian. The Mechanism of Copper Accumulation Induced Autophagy in Hepatocytes of ATP7B-deficient Mice Based on RNA-sequencing[J]. China Biotechnology, 2021, 41(9): 10-19.
[2] DONG Xue-ying,LIANG Kai,YE Ke-ying,ZHOU Ce-fan,TANG Jing-feng. Advances in the Regulation of Receptor Tyrosine Kinase on Autophagy[J]. China Biotechnology, 2021, 41(5): 72-78.
[3] CAI Run-ze,WANG Zheng-bo,CHEN Yong-chang. Research Progress of Mecp2 Affecting Metabolic Function in Rett Syndrome[J]. China Biotechnology, 2021, 41(2/3): 89-97.
[4] HAN Xue-yi,LI Yi-fan,LU Yue-da,XIONG Guo-liang,YU Chang-yuan. Preparation of Porphyrin Metal-organic Framework with Autophagy Inhibitory Effect and Its Photodynamic Cancer Treatment[J]. China Biotechnology, 2021, 41(11): 48-54.
[5] ZENG Xiang-Yi,PAN Jie. Progress on Autophagy Regulation of Browning of White Adipose Cells[J]. China Biotechnology, 2020, 40(6): 63-73.
[6] ZHU Yongzhao,TAO Jin,REN Meng-meng,XIONG Ran,HE Ya-qin,ZHOU Yu,LU Zhen-hui,DU Yong,YANG Zhi-hong. Autophagy Protects Against Apoptosis of Human Placental Mesenchymal Stem Cells of Fetal Origin Induced by Tumor Necrosis Fator-α[J]. China Biotechnology, 2019, 39(9): 62-67.
[7] Xiao-yan YANG,Jing-dong MAO,Shu-sen LI,Xin-ying ZHANG,Li-yin DU. Advances in Autophagy on the Regulation of Neutrophil Function[J]. China Biotechnology, 2019, 39(6): 84-90.
[8] Dan-tong HONG,Fan ZHANG,Shu-e WANG,Hong-xia WANG,Kun-mei LIU,Guang-xian XU,Zheng-hao HUO,Le GUO. miR-17-5p Targeting Autophagy Related Protein ATG7 Regulates Macrophages against Mycobacterium tuberculosis Infection[J]. China Biotechnology, 2019, 39(6): 1-8.
[9] Yan LIU,Peng DAI,Yun-feng ZHU. Research Progress of Relationship between Exosomes and Autophagosomes[J]. China Biotechnology, 2019, 39(6): 78-83.
[10] Lu WANG,Li-yuan YANG,Yu-ting TANG,Yao TAO,Li LEI,Yi-pei JING,Xue-ke JIANG,Ling ZHANG. Effects of PKM2 Knockdown on Proliferation and Apoptosis of Human Leukemia Cells and Its Potential Mechanism[J]. China Biotechnology, 2019, 39(3): 13-20.
[11] SHEN Bing-lei,WANG Yu-xuan,HAN Shuo,LI Xi,YANG Zhuo-ni-na,ZOU Zi-wen,LIU Juan. Research Progress of Non-coding RNA in Autophagy[J]. China Biotechnology, 2019, 39(12): 56-63.
[12] ZHAN Hui-lu,BAI Ying,ZHUANG Yan,MENG Juan,ZHAO Hai-yang. Research Progress of Autophagy Induced Protection by Nanomaterials[J]. China Biotechnology, 2019, 39(12): 64-72.
[13] LI Sheng. The Induction Effect of Metal Ions for Cell Autophagy[J]. China Biotechnology, 2017, 37(7): 124-132.
[14] ZHAO Yuan-bo, HONGDu Bei-qi, CHEN Ying-yu. Establishment of p62/SQSTM1-luciferase Based Method for Cellular Autophagic Flux Determination[J]. China Biotechnology, 2016, 36(1): 55-62.
[15] ZHU Zhi-jian, LIAN Kai-qi, ZHENG Hai-xue, YANG Xiao-pu. The Research Progress About Invasion of Foot and Mouth Virus to Cells[J]. China Biotechnology, 2015, 35(5): 103-108.