Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (7): 15-21    DOI: 10.13523/j.cb.2002034
    
Screening, Expression and Specificity Detection of Anti-TNF-α Nanobody
LIN Shi-xin1,LIU Dong-chen2,LEI Yun2,XIONG Sheng2,XIE Qiu-ling1,**()
1 College of life science and technology, Jinan university, Guangzhou 510632, China
2 National Engineering Research Center of Genetic Medicine, Jinan university, Guangzhou 510632, China
Download: HTML   PDF(1140KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective: To construct the phage library of anti-TNF-α (vascular endothelial growth factor) andto screen and express the nanobodies which have specificity and affinity with TNF-α. Methods: (1) The llama was immunized with TNF-α, and the total RNA of peripheral blood lymphocytes was extracted to construct a phage library, the clones having affinity with TNF-α were screened by multiple panning. (2) Then their molecular weight, pI and hydrophilicity were analyzed by ExPASy. And the VHH genes were cloned into the expression vector pNCS to construct the recombinant plasmids (pNCS-NbTNF-α) and to express these recombinant nanobodies (NbTNF-α) in E.coli DH5α. (3) The recombinant nanobodies were purified by Ni metal chelate affinity chromatography, followed by detection the specificity by enzyme linked immunosorbent assay (ELISA).Results: (1) Ten VHH gene fragments having affinity with TNF-α were obtained after phage library construction and panning. (2) Based on the bioinformatics analysis, it was found that eight nanobodies were hydrophilic proteins with molecular weights of 19.6-20.1kDa. All of NbTNF-α were expressed in E.coli DH5α in soluble form. (3) It was showed that five recombinant nanobodies, NbTNF-α-1, NbTNF-α-2, NbTNF-α-3, NbTNF-α-4 and NbTNF-α-5 could specifically bind to TNF-α. Conclusion: Eight nanobodies with specificity to TNF-α were screened and expressed in E.coli successfully, and five NbTNF-α showed good affinity with TNF-α, which could be possible candidates for anti-TNF-α drug.



Key wordsNanobody      Tumor necrosis factor      Phage library      Screening     
Received: 22 February 2020      Published: 13 August 2020
ZTFLH:  Q816  
Corresponding Authors: Qiu-ling XIE     E-mail: txql@jnu.edu.cn
Cite this article:

LIN Shi-xin,LIU Dong-chen,LEI Yun,XIONG Sheng,XIE Qiu-ling. Screening, Expression and Specificity Detection of Anti-TNF-α Nanobody. China Biotechnology, 2020, 40(7): 15-21.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2002034     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I7/15

Tab.1 The list of primers
Fig.1 Titer of antibody in llama immunized with TNF-α
Fig.2 The pComb-3X-VHH digested by Sfi M:DNA Marker;1-8:The band of pComb-3X-VHH with SfiⅠ digestion
Fig.3 Panning of NbTNF-α
Fig.4 Enrichment of NbTNF-α
Fig.5 Screening of NbTNF-α
纳米蛋白 MV(分子量) pI(等电点) 总亲水性平均
系数(GRAVY)
NbTNF-α-1 19 656.63 5.76 -0.641
NbTNF-α-2 19 694.67 5.57 -0.817
NbTNF-α-3 19 800.89 6.37 -0.332
NbTNF-α-4 19 992.05 5.94 -0.614
NbTNF-α-5 19 883.69 5.76 -0.857
NbTNF-α-6 20 116.12 5.73 -0.265
NbTNF-α-7 19 882.95 6.14 -0.703
NbTNF-α-8 20 106.03 5.85 -0.698
Table 2 Physicochemical properties of NbTNF-α protein
Fig.6 SDS-PAGE electrophoresis and Western blot analysis of NbTNF-α M: Marker; 1-8: The band of NbTNF-α-1 -NbTNF-α-8
Fig.7 The purified NbTNF-α proteins 1-8: The band of NbTNF-α-1 -NbTNF-α-8
Fig.8 Specificity of NbTNF-α proteins
[1]   Zelova H, Hosek J. TNF-alpha signalling and inflammation: interactions between old acquaintances. Inflammation Research, 2013,62(7):641-651.
pmid: 23685857
[2]   Brenner D, Blaser H, Mak T W. Regulation of tumour necrosis factor signalling: live or let die. Nat Rev Immunol, 2015,15(6):362-374.
doi: 10.1038/nri3834 pmid: 26008591
[3]   Katsanos K H, Papadakis K A. Inflammatory bowel disease: Updates on molecular targets for biologics. Gut and Liver, 2017,11(4):455-463.
doi: 10.5009/gnl16308 pmid: 28486793
[4]   Soria G, Ofri-Shahak M, Haas I, et al. Inflammatory mediators in breast cancer: Coordinated expression of TNF alpha & IL-1 beta with CCL2 & CCL5 and effects on epithelial-to-mesenchymal transition. Bmc Cancer, 2011,11:130.
doi: 10.1186/1471-2407-11-130 pmid: 21486440
[5]   Laddha N C, Dwivedi M, Begum R. Increased tumor necrosis factor (TNF)-alpha and its promoter polymorphisms correlate with disease progression and higher susceptibility towards vitiligo. PLoS One, 2012,7(12):e52298.
pmid: 23284977
[6]   Schioppa T, Moore R, Thompson R G, et al. B regulatory cells and the tumor-promoting actions of TNF-alpha during squamous carcinogenesis. Proc Natl Acad Sci USA, 2011,108(26):10662-10667.
doi: 10.1073/pnas.1100994108 pmid: 21670304
[7]   Grimm M, Lazariotou M, Kircher S, et al., Tumor necrosis factor-alpha is associated with positive lymph node status in patients with recurrence of colorectal cancer-indications for anti-TNF-alpha agents in cancer treatment. Cell Oncol (Dordr), 2011,34(4):315-326.
[8]   Wcislo-Dziadecka D, Zbiciak-Nylec M, Brzezińska-Wcis?o L, et al. TNF-alpha in a molecularly targeted therapy of psoriasis and psoriatic arthritis. Postgraduate Medical Journal, 2016,92(1085):172-178.
doi: 10.1136/postgradmedj-2015-133419 pmid: 26719452
[9]   De Meyer T, Muyldermans S, Depicker A. Nanobody-based products as research and diagnostic tools. Trends in Biotechnology, 2014,32(5):263-270.
doi: 10.1016/j.tibtech.2014.03.001 pmid: 24698358
[10]   Hassanzadeh-Ghassabeh G, Devoogdt N, De Pauw P, et al., Nanobodies and their potential applications. Nanomedicine, 2013,8(6):1013-1026.
doi: 10.2217/nnm.13.86 pmid: 23730699
[11]   Alirahimi E, Kazemi-Lomedasht F, Shahbazzadeh D, et al. Nanobodies as novel therapeutic agents in envenomation. Biochimica Et Biophysica Acta-General Subjects, 2018,1862(12):2955-2965.
doi: 10.1016/j.bbagen.2018.08.019 pmid: 30309831
[12]   Muyldermans S. Nanobodies: natural single-domain antibodies. Annu Rev Biochem, 2013,82:775-797.
pmid: 23495938
[13]   Schumacher D, Helma J, Schneider A F L, et al. Nanobodies: chemical functionalization strategies and intracellular applications. Angewandte Chemie-International Edition, 2018,57(9):2314-2333.
doi: 10.1002/anie.201708459 pmid: 28913971
[14]   Chakravarty R, Goel S, Cai W. Nanobody: the “Magic Bullet”for molecular imaging. Theranostics, 2014,4(4):386-398.
pmid: 24578722
[15]   Oliveira S, Heukers R, Sornkom J, et al. Targeting tumors with nanobodies for cancer imaging and therapy. Journal of Controlled Release, 2013,172(3):607-617.
doi: 10.1016/j.jconrel.2013.08.298 pmid: 24035975
[16]   Oliveira S, Van Dongen G A M S, Walsum M S, et al. Rapid visualization of human tumor xenografts through optical imaging with a near-infrared fluorescent anti-epidermal growth factor receptor nanobody. Molecular Imaging, 2012,11(1):33-46.
pmid: 22418026
[17]   Revets H, De Baetselier P, Muyldermans S. Nanobodies as novel agents for cancer therapy. Expert Opinion on Biological Therapy, 2005,5(1):111-124.
doi: 10.1517/14712598.5.1.111 pmid: 15709914
[18]   Cortez-Retamozo V, Backmann N, Senter P D, et al. Efficient cancer therapy with a nanobody-based conjugate. Cancer Research, 2004,64(8):2853-2857.
doi: 10.1158/0008-5472.can-03-3935 pmid: 15087403
[19]   Roovers R C, Vosjan M J W D, Laeremans T, et al. A biparatopic anti-EGFR nanobody efficiently inhibits solid tumour growth. International Journal of Cancer, 2011,129(8):2013-2024.
doi: 10.1002/ijc.26145 pmid: 21520037
[20]   Ibanez L I, De Filette M, Hultberg A, et al. Nanobodies with in vitro neutralizing activity protect mice against H5N1 influenza virus infection. J Infect Dis, 2011,203(8):1063-1072.
doi: 10.1093/infdis/jiq168 pmid: 21450996
[21]   Johnson Z I, Schoepflin Z R, Choi H, et al. Disc in flames: roles of TNF-α and IL-1β in intervertebral disc degeneration. European Cells & Materials, 2015,30:104-117.
doi: 10.22203/ecm.v030a08 pmid: 26388614
[22]   Sampaio Lacativa P G, Fleiuss de Farias M L. Osteoporosis and inflammation. Arquivos Brasileiros De Endocrinologia E Metabologia, 2010,54(2):123-132.
doi: 10.1590/s0004-27302010000200007 pmid: 20485900
[23]   Park S, Lakatta E G. Role of inflammation in the pathogenesis of arterial stiffness. Yonsei Medical Journal, 2012,53(2):258-261.
pmid: 22318811
[24]   Bortolato B, Carvalho F A, Soczynska K J, et al. The involvement of TNF-alpha in cognitive dysfunction associated with major depressive disorder: an opportunity for domain specific treatments. Current Neuropharmacology, 2015,13(5):558-576.
pmid: 26467407
[25]   Jovčevska I, Muyldermans S. The therapeutic potential of nanobodies. BioDrugs, 2020,34(1):11-26.
doi: 10.1007/s40259-019-00392-z pmid: 31686399
[1] GUO Fang,ZHANG Liang,FENG Xu-dong,LI Chun. Plant-derived UDP-glycosyltransferase and Its Molecular Modification[J]. China Biotechnology, 2021, 41(9): 78-91.
[2] QIAN Yu,DING Xiao-yu,LIU Zhi-qiang,YUAN Zeng-qiang. An Efficient Monoclonal Establishment Method of Genetically Modified Human Pluripotent Stem Cells[J]. China Biotechnology, 2021, 41(8): 33-41.
[3] ZHANG Hu,LIU Zhen-zhou,CHEN Jia-min,GAO Bao-yan,ZHANG Cheng-wu. Research Progress on the Production of Bioactive Compounds from Marine Diatoms[J]. China Biotechnology, 2021, 41(4): 81-90.
[4] LI Bo,WANG Ze-jian,LIANG Jian-guang,LIU Ai-jun,LI Hai-dong. Breeding of High-yield Rifamycin SV Strain by Plasma Action Combined with Oxygen Restriction Model[J]. China Biotechnology, 2021, 41(2/3): 38-44.
[5] YUAN Bo,WANG Jie-wen,KANG Guang-bo,HUANG He. Research Progress and Application of Bispecific Nanobody[J]. China Biotechnology, 2021, 41(2/3): 78-88.
[6] DENG Rui,ZENG Jia-li,LU Xue-mei. Screening and Structure-activity Relationship Analysis of Anti-tumor Derived Peptides Based on Musca domestica cecropin[J]. China Biotechnology, 2021, 41(11): 14-22.
[7] FAN Yan,YANG Miao,XUE Song. High-throughput Screening of Benzoate Decarboxylase for High-efficiency Fixation of CO2 Based on Spectroscopy-image Grayscale Method[J]. China Biotechnology, 2021, 41(11): 55-63.
[8] CHA Ya-ping, ZHU Mu-zi, LI Shuang. Research Progress on In Vivo Continuous Directed Evolution[J]. China Biotechnology, 2021, 41(1): 42-51.
[9] GUO Er-peng, ZHANG Jian-zhi, SI Tong. Recent Advances in the High-throughput Engineering of Lanthipeptides[J]. China Biotechnology, 2021, 41(1): 30-41.
[10] TONG Mei,CHENG Yong-qing,LIU Jin-yi,XU Chen. Construction of a Strain for Promoting Production of Small Molecule Antibodies in Periplasmic Space of Escherichia coli[J]. China Biotechnology, 2020, 40(5): 48-56.
[11] ZHU Yongzhao,TAO Jin,REN Meng-meng,XIONG Ran,HE Ya-qin,ZHOU Yu,LU Zhen-hui,DU Yong,YANG Zhi-hong. Autophagy Protects Against Apoptosis of Human Placental Mesenchymal Stem Cells of Fetal Origin Induced by Tumor Necrosis Fator-α[J]. China Biotechnology, 2019, 39(9): 62-67.
[12] LI Hang,WANG Tong. Research Progress on Overcoming Debye Screening Effect of Silicon Nanowire Field-effect Transistor Biosensor[J]. China Biotechnology, 2019, 39(10): 112-116.
[13] Jin-jing LI,Fei XU,Yan-wei JI,Mei SHU,Zhui TU,Jin-heng FU. Biopanning of Anti c-Myc-tag Nanobodies and Its Application for Bioimaging[J]. China Biotechnology, 2018, 38(2): 61-67.
[14] Jing-li WANG,Zhen-zhen DING,Hui LIU,Yan-ting TANG. Development and Application of the Binding Assay for Tomato Spotted Wilt Virus Nucleoprotein Using Fluorescent Polarization Technology[J]. China Biotechnology, 2018, 38(11): 18-24.
[15] SONG Jia-wen, TIAN Su, ZHANG Yu-ru, WANG Zhi-zhen, CHANG Zhong-yi, GAO Hong-liang, BU Guo-jian, JIN Ming-fei. Genome Shuffling Enhances Transglutaminase Production of Streptomyces mobaraensis[J]. China Biotechnology, 2017, 37(9): 105-111.