Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2016, Vol. 36 Issue (12): 98-103    DOI: DOI:10.13523/j.cb.20161214
    
The Progress of CRISPR/Cas9 for Disease Modeling and Gene Correction
ZHANG Yi-yi, WU Yan-shuang, SUN Rui-zhen, LEI Lei
Department of Histology and Embryology, Harbin Medical University, Harbin 150081, China
Download: HTML   PDF(1816KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Recently, genomic engineering technology using programmable nucleases boomed. The CRISPR/Cas9 system that consists of endonuclease Cas9 and guide RNA (gRNA) is derived from the adaptive bacterial and archaea immune system. Cas9 endonuclease introduces the DNA double-stranded break with the guidance of gRNA, therefore it enables researchers to precisely and efficiently manipulate specific genomic locus. Meanwhile,this system can reveal the unknown roles of genes in disease processes, and has great potential for clinical therapeutic applications. Here current progresses in disease modeling and gene correction by CRISPR/Cas9 were reviewed.



Key wordsDisease model      CRISPR/Cas9      Gene correction      Genomic editing     
Received: 25 July 2016      Published: 25 December 2016
ZTFLH:  Q819  
Cite this article:

ZHANG Yi-yi, WU Yan-shuang, SUN Rui-zhen, LEI Lei. The Progress of CRISPR/Cas9 for Disease Modeling and Gene Correction. China Biotechnology, 2016, 36(12): 98-103.

URL:

https://manu60.magtech.com.cn/biotech/DOI:10.13523/j.cb.20161214     OR     https://manu60.magtech.com.cn/biotech/Y2016/V36/I12/98

[1] Coffey A, Ross R P. Bacteriophage-resistance systems in dairy starter strains:molecular analysis to application. Antonie Van Leeuwenhoek, 2002, 82(1-4):303-321.
[2] Doudna J A, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science, 2014,346(6213):1258096.
[3] Mojica F J. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology, 2009,155(Pt 3):733-740.
[4] Jiang W. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol, 2013,31(3):233-239.
[5] Mali P. RNA-guided human genome engineering via Cas9. Science, 2013,339(6121):823-826.
[6] Garneau J E. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 2010,468(7320):67-71.
[7] Makarova K S. Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol, 2011,9(6):467-477.
[8] Jinek M. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012,337(6096):816-821.
[9] Fu Y. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol, 2013,31(9):822-826.
[10] Pattanayak V. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol, 2013,31(9):839-843.
[11] Fu Y, Sander D. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol, 2014,32(3):279-284.
[12] Ran F A, Hsu P D, Lin C Y,et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 2013,154(6):1380-1389.
[13] Yu C, Liu Y, Ma T, et al. Small molecules enhance CRISPR genome editing in pluripotent stem cells. Cell Stem Cell, 2015,16(2):142-147.
[14] Maruyama T. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol, 2015,33(5):538-542.
[15] Gilbert L A, Horlbeck M A,Adamson B,et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell, 2014,159(3):647-661.
[16] Sanjana N E, Shalem O, Zhang F. Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods, 2014,11(8):783-784.
[17] Cong L, Ran F A, Cox D,et al. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013,339(6121):819-823.
[18] Zhou X, Xin J, Fan N, et al. Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer. Cell Mol Life Sci, 2015,72(6):1175-1184.
[19] Wang X, Huang J, Cao C,et al. One-step generation of triple gene-targeted pigs using CRISPR/Cas9 system. Sci Rep, 2016,6:20620.
[20] Hai T. One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Res, 2014,24(3):372-375.
[21] Wang X, Zhou J, Cao C, et al. Efficient CRISPR/Cas9-mediated biallelic gene disruption and site-specific knockin after rapid selection of highly active sgRNAs in pigs. Sci Rep, 2015,5:13348.
[22] Xue W, Chen S, Yin H, et al. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature, 2014,514(7522):380-384.
[23] Maresch R, Mueller S, Veltkamp C, et al. Multiplexed pancreatic genome engineering and cancer induction by transfection-based CRISPR/Cas9 delivery in mice. Nat Commun, 2016,7:10770.
[24] Yang D, Xu J, Zhu T, et al. Effective gene targeting in rabbits using RNA-guided Cas9 nucleases. J Mol Cell Biol, 2014,6(1):97-99.
[25] Chen Y, Zheng Y, Kang Y, et al. Functional disruption of the dystrophin gene in rhesus monkey using CRISPR/Cas9. Hum Mol Genet, 2015,24(13):3764-3774.
[26] Wu Y, et al. Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell, 2013,13(6):659-662.
[27] Zhou X, Wang L, Du Y. Efficient generation of gene-modified pigs harboring precise orthologous human mutation via CRISPR/Cas9-induced homology-directed repair in zygotes. Hum Mutat, 2016,37(1):110-118.
[28] Yin H, Xue W, Chen S, et al. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol, 2014,32(6):551-553.
[29] Reyes L M, Estvada J L, Wang Z Y, et al. Creating class I MHC-null pigs using guide RNA and the Cas9 endonuclease. J Immunol, 2014,193(11):5751-5757.
[30] Yang L, Guell M, Niu D, et al. Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science, 2015,350(6264):1101-1104.
[31] Drost J, Jaarsveld R H, Ponsioen B, et al. Sequential cancer mutations in cultured human intestinal stem cells. Nature, 2015,521(7550):43-47.
[32] Jiang J, Zhang L, Zhou X, et al. Induction of site-specific chromosomal translocations in embryonic stem cells by CRISPR/Cas9. Sci Rep, 2016,6:21918.
[33] Xie F, Ye L, Chang J C, et al. Seamless gene correction of beta-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Res, 2014,24(9):1526-1533.
[34] Howden S E, Maufort J P, Duffin B M, et al. Simultaneous reprogramming and gene correction of patient fibroblasts. Stem Cell Reports, 2015,5(6):1109-1118.
[35] Firth A L, Menson T, Parker G S, et al. Functional gene correction for cystic fibrosis in lung epithelial cells generated from patient iPSCs. Cell Rep, 2015,12(9):1385-1390.
[36] Chang C W, Lai Y S, Westin E, et al. Modeling human severe combined immunodeficiency and correction by CRISPR/Cas9-enhanced gene targeting. Cell Rep, 2015,12(10):1668-1677.
[37] Wu Y, Zhou H, Fan X, et al. Correction of a genetic disease by CRISPR-Cas9-mediated gene editing in mouse spermatogonial stem cells. Cell Res, 2015,25(1):67-79.
[38] Beil-Wagner J, Dossinger G, Schober K, et al. T cell-specific inactivation of mouse CD2 by CRISPR/Cas9. Sci Rep, 2016,6:21377.
[39] Schumann K, Lin S, Boyer E, et al. Generation of knock-in primary human T cells using Cas9 ribonucleoproteins. Proc Natl Acad Sci U S A, 2015,112(33):10437-10442.
[40] Seeger C, Sohn J A. Complete spectrum of CRISPR/Cas9-induced mutations on HBV cccDNA. Mol Ther, 2016,24(7):1258-1266.
[41] Lin S R, Yang H C,Kuo Y T,et al. The CRISPR/Cas9 system facilitates clearance of the intrahepatic HBV templates in vivo. Mol Ther Nucleic Acids, 2014,3:e186.
[42] Zetsche B, Gootenberg J S, Abudayyeh O,et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell, 2015,163(3):759-771.
[43] Gao F, Shen X Z, Jiang F,et al. DNA-guided genome editing using the Natronobacterium gregoryi Argonaute. Nat Biotech, 2016, advance online publication.

[1] WU Xiu-zhi,WANG Hong-jie,ZU Yao. Functional Study of hoxa1a Regulating Craniofacial Bone Development in Zebrafish[J]. China Biotechnology, 2021, 41(9): 20-26.
[2] BI Bo,ZHANG Yu,ZHAO Hui. Application of Yeast Hybrid System in Study of Off-target Rate of CRISPR/Cas9 Gene Editing System[J]. China Biotechnology, 2021, 41(6): 27-37.
[3] WANG Yan-mei,KOU Hang,MA Mei,SHEN Yu-yu,ZHAO Bao-ding,LU Fu-ping,LI Ming. CRISPR/Cas9-mediated Inactivation of the Pectinase Gene in Aspergillus niger and Evaluation of the Mutant Strain[J]. China Biotechnology, 2021, 41(5): 35-44.
[4] DUAN Yang-yang,ZHANG Feng-ting,CHENG Jiang,SHI Jin,YANG Juan,LI Hai-ning. The Effect of SIRT2 on Apoptosis and Mitochondrial Function in Parkinson’s Disease Model Cells Induced by MPP+[J]. China Biotechnology, 2021, 41(4): 1-8.
[5] GUO Yang,CHEN Yan-juan,LIU Yi-chen,WANG Hai-jie,WANG Cheng-ji,WANG Jue,WAN Ying-han,ZHOU Yu,XI Jun,SHEN Ru-ling. Pd-1 Gene Knockout Mouse Model Construction and Preliminary Phenotype Verification[J]. China Biotechnology, 2021, 41(10): 1-11.
[6] GUO Yang,WAN Ying-han,WANG Jue,GONG Hui,ZHOU Yu,CI Lei,WAN Zhi-peng,SUN Rui-lin,FEI Jian,SHEN Ru-ling. Toll-like Receptor 4 (TLR4) Gene Knockout Mouse Model Construction and Preliminary Phenotypic Analysis[J]. China Biotechnology, 2020, 40(6): 1-9.
[7] HUANG Sheng, YAN Qi-tao, XIONG Shi-lin, PENG Yi-qi, ZHAO Rui. Construction of CHD5 Gene Overexpressing Lentiviral Vector Based on CRISPR/Cas9-SAM System and the Effect of CHD5 on Proliferation, Migration and Invasion in T24 Cells[J]. China Biotechnology, 2020, 40(3): 1-8.
[8] LEI Hai-ying,ZHAO Qing-song,BAI Feng-lin,SONG Hui-fang,WANG Zhi-jun. Identification of Developing-related Gene ZmCen Using CRISPR/Cas9 in Maize[J]. China Biotechnology, 2020, 40(12): 49-57.
[9] WANG Yue,MU Yan-shuang,LIU Zhong-hua. Progress of CRISPR/Cas Base Editing System[J]. China Biotechnology, 2020, 40(12): 58-66.
[10] WANG Wei-dong,DU Jia-ru,ZHANG Yun-shang,FAN Jian-ming. The Application of CRISPR/Cas9 in the Treatment of Human Virus Infection-Related Diseases[J]. China Biotechnology, 2020, 40(12): 18-24.
[11] WANG Zhi-min,BI Mei-yu,HE Jia-fu,Ren Bing-xu,LIU Dong-jun. Development of CRISPR/Cas9 System and Its Application in Animal Gene Editing[J]. China Biotechnology, 2020, 40(10): 43-50.
[12] Lu JIAN,Ying-hui HUANG,Tian-ya LIANG,Li-min WANG,Hong-tao MA,Ting ZHANG,Dan-yang LI,Ming-lian WANG. Generation of JAK2 Gene Knockout K562 Cell Line by CRISPR/Cas9 System[J]. China Biotechnology, 2019, 39(7): 39-47.
[13] Song-tao ZHOU,Yun CHEN,Xiao-hai GONG,Jian JIN,Hua-zhong LI. Using CRISPR/Cas9 Technology to Construct Human Serum Albumin CHO Stable Expression Cell Line[J]. China Biotechnology, 2019, 39(4): 52-59.
[14] WAN Ying-han,CI Lei,WANG Jue,GONG Hui,LI Jun,DONG Ru,SUN Rui-lin,FEI Jian,SHEN Ru-ling. Construction and Preliminary Phenotypic Verification of PD-L1 Knockout Mice[J]. China Biotechnology, 2019, 39(12): 42-49.
[15] Sai-bao LIU,Ya-fang LI,Hui WANG,Wei WANG,Duo-liang RAN,Hong-yan CHEN,Qing-wen MENG. Construction of Influenza Virus High-producing Cell Line MDCK-Tpl2 -/- with CRISPR / Cas9[J]. China Biotechnology, 2019, 39(1): 46-54.