Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2015, Vol. 35 Issue (5): 109-118    DOI: 10.13523/j.cb.20150516
    
Current Progress in Recombinant Systems for Expression of Hydrogenases
DING Yi1,3, WU Hai-ying1,2, SHI Ji-ping1,2, SUN Jun-song1,2
1. Biorefinery Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China;
2. School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China;
3. University of Chinese Academy of Sciences, Beijing 100049, China
Download: HTML   PDF(474KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Hydrogenase enzymes, which catalyze the formation and dissociation of hydrogen are heteromeric metalloenzymes. Mature hydrogenases are usually highly sensitive to oxygen,and the pro-enzymes are not active unless they are modified by a complicated post-transltational maturation process which involves synergized work on catalytic center of the enzymes by related chaprons. Catalytic mechanisms of hydrogenases also plays pivotal role in development of valuable oxygen-resistant biocatalysts for bio-hydrogen production and synthetic hydrogenase mimics applied in green battery industry. Recombinant enzymes are therefore indispensable for enzymes' structural studies, since acquisition of native enzymes is extremely difficult, and, in some case impossible. This review aims to summarize and analyze recent progress in studies using native or foreign hosts to achive successful expression of recombinant enzymes that are either iron only or NiFe containing. Furthermore, the enzymatic features were systematically compared between native and recombinant proteins, and the likely solutions for future works in this area were also proposed.



Key wordsHydrogenase      Recombinant expression      Maturation factor      Post-translational modification     
Received: 03 February 2015      Published: 25 May 2015
ZTFLH:  Q786  
Cite this article:

DING Yi, WU Hai-ying, SHI Ji-ping, SUN Jun-song. Current Progress in Recombinant Systems for Expression of Hydrogenases. China Biotechnology, 2015, 35(5): 109-118.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20150516     OR     https://manu60.magtech.com.cn/biotech/Y2015/V35/I5/109


[1] Ihara M, Nakamoto H, Kamachi T, et al. Photoinduced hydrogen production by direct electron transfer from photosystem I cross-linked with cytochrome c(3) to NiFe -hydrogenase. Photochemistry and Photobiology, 2006, 82(6): 1677-1685.

[2] Stephenson M, Stickland L H. Hydrogenase: A bacterial enzyme activating molecular hydrogen. I. The properties of the enzyme. Biochemical Journal, 1931, 25(1): 205-214.

[3] Mortenson L E, Carnahan J E, Valentine R C. An electron transport factor from clostridium pasteurianum. Biochemical and Biophysical Research Communications, 1962, 7(6): 448-452.

[4] Vignais P M, Billoud B. Occurrence, classification, and biological function of hydrogenases: an overview. Chemical Reviews, 2007, 107(10): 4206-4272.

[5] Yagi T, Higuchi Y. Studies on hydrogenase. Proceedings of the Japan Academy, Series B, 2013, 89(1): 16-33.

[6] Paul C E, Arends I, Hollmann F. Is simpler Better? Synthetic nicotinamide cofactor analogues for redox chemistry. Acs Catalysis, 2014, 4(3): 788-797.

[7] Rollin J A, Tam T K, Zhang Y H P. New biotechnology paradigm: cell-free biosystems for biomanufacturing. Green Chemistry, 2013, 15(7): 1708-1719.

[8] Zirngibl C, Vandongen W, Schworer B, et al. H-2-forming methylenetetrahydromethanopterin dehydrogenase, a novel type of hydrogenase without iron-sulfur clusters in methanogenic archaea. European Journal of Biochemistry, 1992, 208(2): 511-520.

[9] Thauer R K. Biochemistry of methanogenesis: a tribute to Marjory Stephenson. Microbiology-Uk, 1998, 144: 2377-2406.

[10] Thauer R K, Klein A R, Hartmann G C. Reactions with molecular hydrogen in microorganisms: evidence for a purely organic hydrogenation catalyst. Chemical Reviews, 1996, 96(7): 3031-3042.

[11] Korbas M, Vogt S, Meyer-Klaucke W, et al. The iron-sulfur cluster-free hydrogenase (Hmd) is a metalloenzyme with a novel iron binding motif. Journal of Biological Chemistry, 2006, 281(41): 30804-30813.

[12] Shima S, Lyon E J, Sordel-Klippert M S, et al. The cofactor of the iron-sulfur cluster free hydrogenase Hmd: Structure of the light-inactivation product. Angewandte Chemie-International Edition, 2004, 43(19): 2547-2551.

[13] Friedrich B, Fritsch J, Lenz O. Oxygen-tolerant hydrogenases in hydrogen-based technologies. Current Opinion in Biotechnology, 2011, 22(3): 358-364.

[14] Nicolet Y, Cavazza C, Fontecilla-Camps J C. Fe-only hydrogenases: structure, function and evolution. Journal of Inorganic Biochemistry, 2002, 91(1): 1-8.

[15] Peters J W. Structure and mechanism of iron-only hydrogenases. Current Opinion in Structural Biology, 1999, 9(6): 670-676.

[16] Vignais P M, Billoud B, Meyer J. Classification and phylogeny of hydrogenases. Fems Microbiology Reviews, 2001, 25(4): 455-501.

[17] Nicolet Y, Piras C, Legrand P, et al. Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center. Structure with Folding & Design, 1999, 7(1): 13-23.

[18] Peters J W, Lanzilotta W N, Lemon B J, et al. X-ray crystal structure of the Fe-only hydrogenase (Cpl) from Clostridium pasteurianum to 1.8 angstrom resolution. Science, 1998, 282(5395): 1853-1858.

[19] Cohen J, Kim K, King P, et al. Finding gas diffusion pathways in proteins: application to O-2 and H-2 transport in Cpl FeFe -hydrogenase and the role of packing defects. Structure, 2005, 13(9): 1321-1329.

[20] Frey M. Hydrogenases: Hydrogen-activating enzymes. Chembiochem, 2002, 3(2-3): 153-160.

[21] Kim J Y H, Cha H J. Recent progress in hydrogenase and its biotechnological application for viable hydrogen technology. Korean Journal of Chemical Engineering, 2013, 30(1): 1-10.

[22] Pierik A J, Roseboom W, Happe R P, et al. Carbon monoxide and cyanide as intrinsic ligands to iron in the active site of NiFe -hydrogenases - NiFe(CN)2CO, biology's way to activate H2. Journal of Biological Chemistry, 1999, 274(6): 3331-3337.

[23] Fontecilla-Camps J C, Frey M, Garcin E, et al. Hydrogenase: A hydrogen-metabolizing enzyme. What do the crystal structures tell us about its mode of action? Biochimie, 1997, 79(11): 661-666.

[24] Volbeda A, Charon M H, Piras C, et al. Crystal-structure of the nickel-iron hydrogenase from desulfovibrio-gigas. Nature, 1995, 373(6515): 580-587.

[25] Montet Y, Amara P, Volbeda A, et al. Gas access to the active site of Ni-Fe hydrogenases probed by X-ray crystallography and molecular dynamics. Nature Structural Biology, 1997, 4(7): 523-526.

[26] Lenz O, Gleiche A, Strack A, et al. Requirements for heterologous production of a complex metalloenzyme: the membrane-bound NiFe hydrogenase. Journal of bacteriology, 2005, 187(18): 6590-6595.

[27] Lauterbach L, Lenz O. Catalytic production of hydrogen peroxide and water by oxygen-tolerant NiFe -hydrogenase during H-2 cycling in the presence of O-2. Journal of the American Chemical Society, 2013, 135(47): 17897-17905.

[28] Hopkins R C, Sun J S, Jenney F E, et al. Homologous expression of a subcomplex of pyrococcus furiosus hydrogenase that interacts with pyruvate ferredoxin oxidoreductase. PloS one, 2011, 6(10).

[29] Chandrayan S K, McTernan P M, Hopkins R C, et al. Engineering hyperthermophilic archaeon Pyrococcus furiosus to overproduce its cytoplasmic NiFe -hydrogenase. Journal of Biological Chemistry, 2012, 287(5): 3257-3264.

[30] McTernan P M, Chandrayan S K, Wu C H, et al. Engineering the respiratory membrane-bound hydrogenase of the hyperthermophilic archaeon Pyrococcus furiosus and characterization of the catalytically active cytoplasmic subcomplex. Protein Engineering, Design & Selection: PEDS, 2015, 28(1): 1-8.

[31] McTernan P M, Chandrayan S K, Wu C H,et al. Intact functional fourteen-subunit respiratory membrane-bound NiFe -hydrogenase complex of the hyperthermophilic archaeon Pyrococcus furiosus. Journal of Biological Chemistry, 2014, 289(28): 19364-19372.

[32] English C M, Eckert C, Brown K, et al. Recombinant and in vitro expression systems for hydrogenases: new frontiers in basic and applied studies for biological and synthetic H2 production. Dalton transactions, 2009(45): 9970-9978.

[33] Sybirna K, Antoine T, Lindberg P, et al. Shewanella oneidensis: a new and efficient system for expression and maturation of heterologous Fe-Fe hydrogenase from Chlamydomonas reinhardtii. BMC Biotechnology, 2008, 8:73.

[34] Asada Y, Koike Y, Schnackenberg J, et al. Heterologous expression of clostridial hydrogenase in the cyanobacterium Synechococcus PCC7942. Biochimica Et Biophysica Acta-Gene Structure and Expression, 2000, 1490(3): 269-278.

[35] Berto P, D'Adamo S, Bergantino E, et al. The cyanobacterium Synechocystis sp PCC 6803 is able to express an active FeFe -hydrogenase without additional maturation proteins. Biochemical and Biophysical Research Communications, 2011, 405(4): 678-683.

[36] Atta M, Meyer J. Characterization of the gene encoding the Fe -hydrogenase from Megasphaera elsdenii. Biochimica Et Biophysica Acta-Protein Structure and Molecular Enzymology, 2000, 1476(2): 368-371.

[37] Gorwa M F, Croux C, Soucaille P. Molecular characterization and transcriptional analysis of the putative hydrogenase gene of Clostridium acetobutylicum ATCC 824. Journal of Bacteriology, 1996, 178(9): 2668-2675.

[38] Posewitz M C, King P W, Smolinski S L, et al. Discovery of two novel radical S-adenosylmethionine proteins required for the assembly of an active Fe hydrogenase. Journal of Biological Chemistry, 2004, 279(24): 25711-25720.

[39] King P W, Posewitz M C, Ghirardi M L, et al. Functional studies of
[FeFe] hydrogenase maturation in an Escherichia coli biosynthetic system. Journal of Bacteriology, 2006, 188(6): 2163-2172.

[40] Girbal L, von Abendroth G, Winkler M, et al. Homologous and heterologous overexpression in Clostridium acetobutylicum and characterization of purified clostridial and algal Fe-only hydrogenases with high specific activities. Applied and Environmental Microbiology, 2005, 71(5): 2777-2781.

[41] McGlynn S E, Ruebush S S, Naumov A, et al. In vitro activation of FeFe hydrogenase: new insights into hydrogenase maturation. Journal of Biological Inorganic Chemistry, 2007, 12(4): 443-447.

[42] Akhtar M K, Jones P R. Deletion of iscR stimulates recombinant clostridial Fe-Fe hydrogenase activity and H-2-accumulation in Escherichia coli BL21(DE3). Applied Microbiology and Biotechnology, 2008, 78(5): 853-862.

[43] Boyer M E, Stapleton J A, Kuchenreuther J M, et al. Cell-free synthesis and maturation of FeFe hydrogenases. Biotechnology and Bioengineering, 2008, 99(1): 59-67.

[44] Cohen J, Kim K, Posewitz M, et al. Molecular dynamics and experimental investigation of H-2 and O-2 diffusion in Fe -hydrogenase. Biochemical Society Transactions, 2005, 33: 80-82.

[45] Kindle K L. High-frequency nuclear transformation of Chlamydomonas reinhardtii.PNAS, 1990, 87(3): 1228-1232.

[46] Lumbreras V, Stevens D R, Purton S. Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant Journal, 1998, 14(4): 441-447.

[47] Blowers A D, Bogorad L, Shark K B, et al. Studies on chlamydomonas chloroplast transformation - foreign dna can be stably maintained in the chromosome. Plant Cell, 1989, 1(1): 123-132.

[48] Boynton J E, Gillham N W, Harris E H, et al. Chloroplast transformation in chlamydomonas with high-velocity microprojectiles. Science, 1988, 240(4858): 1534-1538.

[49] Casalot L, Rousset M. Maturation of the NiFe hydrogenases. Trends in Microbiology, 2001, 9(5): 228-237.

[50] Voordouw G, Hagen W R, Krusewolters K M, et al. Purification and characterization of Desulfovibrio-vulgaris (hildenborough) hydrogenase expressed in Escherichia-coli. European Journal of Biochemistry, 1987, 162(1): 31-36.

[51] Mura G M, Pedroni P, Pratesi C, et al. The Ni-Fe hydrogenase from the thermophilic bacteriuna Acetomicrobium flavidum. Microbiology-UK, 1996, 142: 829-836.

[52] Grzeszik C, Lubbers M, Reh M, et al. Genes encoding the NAD-reducing hydrogenase of Rhodococcus opacus MR11. Microbiology-UK, 1997, 143: 1271-1286.

[53] Rousset M, Magro V, Forget N, et al. Heterologous expression of the Desulfovibrio gigas NiFe hydrogenase in Desulfovibrio fructosovorans MR400. Journal of Bacteriology, 1998, 180(18): 4982-4986.

[54] Porthun A, Bernhard M, Friedrich B. Expression of a functional NAD-reducing
[NiFe]hydrogenase from the gram-positive Rhodococcus opacus in the gram-negative Ralstonia eutropha. Archives of Microbiology, 2002, 177(2): 159-166.

[55] Kim J Y, Jo B H, Cha H J. Production of biohydrogen by heterologous expression of oxygen-tolerant Hydrogenovibrio marinus
[NiFe]-hydrogenase in Escherichia coli. Journal of Biotechnology, 2011, 155(3): 312-319.

[56] Sun J, Hopkins R C, Jenney F E, et al. Heterologous expression and maturation of an NADP-dependent NiFe -hydrogenase: a key enzyme in biofuel production. PloS one, 2010, 5(5).

[57] Schiffels J, Pinkenburg O, Schelden M, et al. An innovative cloning platform enables large-scale production and maturation of an oxygen-tolerant NiFe -hydrogenase from Cupriavidus necator in Escherichia coli. PloS one, 2013, 8(7).

[58] Weyman P D, Vargas W A, Tong Y K, et al. Heterologous expression of Alteromonas macleodii and Thiocapsa roseopersicina NiFe hydrogenases in Synechococcus elongatus. PloS one, 2011, 6(5): 8.

[59] Wells M A, Mercer J, Mott R A, et al. Engineering a non-native hydrogen production pathway into Escherichia coli via a cyanobacterial NiFe hydrogenase. Metabolic Engineering, 2011, 13(4): 445-453.

[1] CHEN Su-fang,XIA Ming-yin,ZENG Li-yan,AN Xiao-qin,TIAN Min-fang,PENG Jian. Recombinant Expression and Detection of Antimicrobial Activity of Cec4a[J]. China Biotechnology, 2021, 41(10): 12-18.
[2] DENG Tong,ZHOU Hai-sheng,WU Jian-ping,YANG Li-rong. Enhance Soluble Heteroexpression of a NADPH-Dependent Alcohol Dehydrogenase Based on the Chaperone Strategy[J]. China Biotechnology, 2020, 40(8): 24-32.
[3] LE Yi-lin,FU Yu,NI Li,SUN Jian-zhong. Expression and Characterization of a Thermostable Pyruvate Ferredoxin Oxidoreductase from the Hyperthermophile Thermotoga neapolitana and Its Application in Acetyl-CoA Production[J]. China Biotechnology, 2020, 40(3): 72-78.
[4] XUE Rui,YAO Lin,WANG Rui,LUO Zheng-shan,XU Hong,LI Sha. Advances and Applications of Recombinant Mussel Foot Proteins[J]. China Biotechnology, 2020, 40(11): 82-89.
[5] SUN Qing,LIU De-hua,CHEN Zhen. Research Progress of Methanol Utilization and Bioconversion[J]. China Biotechnology, 2020, 40(10): 65-75.
[6] WANG Gang,XIAO Yu,LI Yi,LIU Zhi-gang,PEI Cheng-li,WU Li-da,LI Yan-li,WANG Xi-qing,ZHANG Ming-lei,CHEN Guang,TONG Yi. Effect of ldhL Gene Knock out Mutant on Lactobacillus delbrueckii subsp. blgaricus Producing L-lactic Acid[J]. China Biotechnology, 2019, 39(8): 66-73.
[7] HAN Ting-han,ONG Xue-mei,ING Ya-fang,U Chen,ZHANG Kun-xiao,AO song,U Heng-hao. Cloning, Expression and Characterization of a Heat-Labile Uracil-DNA lycosylase from Scophthalmus maximus[J]. China Biotechnology, 2019, 39(10): 34-43.
[8] CHEN Zi-han,ZHOU Hai-sheng,YIN Xin-jian,WU Jian-ping,YANG Li-rong. Optimizing the Culture Conditions for Amphibacillus xylanus Glutamate Dehydrogenase Gene Engineering Bacteria[J]. China Biotechnology, 2019, 39(10): 58-66.
[9] Wen-jing WANG,Li-yu YANG,Chan-juan LIU,Jin ZHAO,Qin LUO. Effect of Glutamate Dehydrogenase Deletion on Biofilm Formation,Virulence and Extracellular Proteins Expression of Listeria monocytogenes[J]. China Biotechnology, 2018, 38(9): 1-11.
[10] Fang CHEN,Gang XU,Li-rong YANG,Jian-ping WU. Enhancing the Activity of LkTADH by Site-Directed Mutagenesis to Prepare Key Chiral Block of Statins[J]. China Biotechnology, 2018, 38(9): 59-64.
[11] Nan WANG,Lv-hua JIN,Ling ZHANG,Rong LIN,Hai-lin YANG. The Effect of Signal Peptides on the Expression of Leucine Dehydrogenase and Enzymatic Properties in Bacillus subtilis[J]. China Biotechnology, 2018, 38(4): 46-53.
[12] Cun-duo TANG,Hong-ling SHI,Yue MA,Peng-ju DING,Jian-he XU,Yun-chao KAN,Lun-guang YAO. Gene Mining, Expression and Characterization of Novel R-mandelate Dehydrogenases[J]. China Biotechnology, 2018, 38(2): 30-37.
[13] ZHANG Ling,WANG Nan,JIN Lv-hua,LIN Rong,YANG Hai-lin. To Promote the Expression of Leucine Dehydrogenase in Bacillus subtilis via Dual-Promoter and Fermentation Research[J]. China Biotechnology, 2018, 38(12): 21-31.
[14] QIN Meng-fei, SUN Hong, SONG Hao. Studies on the 3-Ketosteriod-1-Dehydrogenation of Steroid Hormone by Cellular lysates of Mycobacterium[J]. China Biotechnology, 2017, 37(8): 23-30.
[15] HE Lin-wei, LIU Zhang-min, FENG Yan, CUI Li. High Throughput Screening Method and Application for L-glutamate Specific Aminotransferase[J]. China Biotechnology, 2017, 37(8): 59-65.