Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2018, Vol. 38 Issue (9): 1-11    DOI: 10.13523/j.cb.20180901
Orginal Article     
Effect of Glutamate Dehydrogenase Deletion on Biofilm Formation,Virulence and Extracellular Proteins Expression of Listeria monocytogenes
Wen-jing WANG,Li-yu YANG,Chan-juan LIU,Jin ZHAO,Qin LUO()
Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
Download: HTML   PDF(1627KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Objective:To explore the effect of glutamate dehydrogenase deletion on biofilm formation, virulence and extracellular proteins expression of Listeria monocytogenes.Methods: The effect of glutamate dehydrogenase deletion on the formation of L.monocytogenes biofilms was examined using a microtiter plate method. The hemolytic activity, the semi-lethal dose of Helicoverpa armigera (Hübner)in wild-type, GDH-deficient and revertant strains were compared.The differentially expressed extracellular proteins between the wild strain and GDH-deficient strain were identified and analyzed by iTRAQ technology. Results: Compared with wild strains, the amount of biofilm formed by the GDH-deficient strains was significantly decreased (P≤0.01), as well as the hemolytic activity, but its semi-lethal dose on Helicoverpa armigera (Hübner) was increased 1.6 fold. The functions of all sixty-two differential expressed extracellular proteins identified by iTRAQ were cataloged into 16 functional groups, including carbohydrate transport and metabolism, energy synthesis and transport, transcription, cell membrane protein related to cell wall and so on. Among them, the most dominant groups including 24 proteins, accounting for 38.71% of total differential expressed proteins, are related to carbon and nitrogen metabolism as well as energy transport, suggesting that glutamate dehydrogenase is a key enzyme in carbon and nitrogen metabolism as well as energy synthesis and transport for L.monocytogenes. The slow growth and reduced biomass of EGDeΔgdhA compared to EGDe in minimal essential medium were in agreement well with these proteomic results. In addition, the expressions of three proteins from EGDeΔgdhA associated with bacterial adhesion and biofilm formation were also significantly decreased.Conclusion: Deletion of glutamate dehydrogenase reduces bacterial biofilm formation and virulence, affects significantly the extracellular protein expression in L.monocytogenes.



Key wordsListeria monocytogenes      Glutamate dehydrogenase      Biofilm      Virulence      iTRAQ      Extracellular protein     
Received: 10 April 2018      Published: 12 October 2018
Corresponding Authors: Qin LUO     E-mail: qinluo@mail.ccnu.edu.cn
Cite this article:

Wen-jing WANG,Li-yu YANG,Chan-juan LIU,Jin ZHAO,Qin LUO. Effect of Glutamate Dehydrogenase Deletion on Biofilm Formation,Virulence and Extracellular Proteins Expression of Listeria monocytogenes. China Biotechnology, 2018, 38(9): 1-11.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20180901     OR     https://manu60.magtech.com.cn/biotech/Y2018/V38/I9/1

Primers Sequences
P1:gdhA A-F
P2:gdhA A-R
P3:gdhA B-F
P4:gdhA B-R
P5:gdhA-ck-F
P6:gdhA-ck-R
P7: gdhA-XbaI-F
P8: gdhA-BamHI-R
P9:pERL3-ck-F
P10:pERL3-ck-R
ACAGGATCCGAACGCCTTAT
ATAAGTAGCCGATTTCACGAC
AAATCGGCTACTTATATAAAGTTCTATTCGG
GGTGAATTCTATTATTACGGGCTTC
AAGGTGGCTCTGACTTTGATC
ATAACAAGGTTACCAGGTGC
TAATCTAGATAAAACTCAACCAAGAGAAGG
ATGGGATCCCTGAGTTCTCAAATCTTACAG
GAAAACCGCTACGGATCACATC
CCAACCTGCCATCACGAGATTT
Table 1 The primers used in this study
Fig.1 Comparison of the growth of EGDe, EGDeΔgdhAand EGDeΔgdh A+pERL3-gdhA in minimal essential medium
Fig.2 Biofilm formation by EGDe, EGDeΔgdhA and EGDeΔgdhA+pERL3-gdhA (a) The biomass of the three strains after 24h and 48h of cultivation (b) Biofilm quantities for the three strains measured by microtiter plate assay after 24h and 48h of incubation (c) Biofilm formed in the 48h by the three strains observed under a 20× objective **:Significant differences of the biomass of biofilm betweent the mutant strain EGDeΔgdhA and the wild type strain EGDe during the same culture time (P≤0.01)
Fig.3 Hemolytic activity of EGDe, EGDeΔgdhA and EGDeΔgdhA+pERL3-gdhA
Strain LD50(cfu)
BHI (死亡条数为0)
EGDe 3.89×106
EGDeΔgdhA 6.34×106
EGDeΔgdhA+pERL3-gdhA 4.07×107
Table 2 The semi-lethal dose of EGDe, EGDeΔgdhA and EGDeΔgdhA+pERL3-gdhA on Helicoverpa armigera(Hübner)
Fig.4 Tissue section of the midgut of H. armigera after 72h injection of EGDe, EGDeΔgdhA and EGDeΔgdhA+pERL3-gdhABM:Basement membrane; EC:Epithelial cell; DEC:Dissolved epithelial cell
COG1) Locus2) Putative function3) MM/Pie4) Protein score Ratio5)
(G) Carbohydrate transport and metabolism
lmo0859 Uncharacterized protein 0.65/46.95 110.97 0.71
lmo2455 2-phosphoglycerate dehydratase 4.70/46.47 40.79 1.29
lmo2848 L-rhamnose isomerase 5.31/48.07 39.33 1.67
lmo2665 PTS galacticol transporter subunit IIC 8.74/45.57 36.51 1.48
lmo2734 Sugar hydrolase 5.14/100.90 67.64 0.19
lmo0401 Alpha-mannosidase 4.95/100.00 45.52 0.63
lmo0359 D-fructose-1,6-biphosphate aldolase 5.02 /31.60 41.25 0.51
lmo1217 Endo-1,4-beta-glucanase and to aminopeptidase 5.14/38.90 36.33 0.58
lmo2771 Beta-glucosidase 5.28/55.10 31.94 0.49
lmo2002 PTS sugar transporter 5.94/17.20 38.98 0.75
lmo2556 Fructose-1,6-bisphosphate aldolase 5.2/30.00 37.70 0.52
(C) Energy production and conversion
lmo0520 Transcriptional regulator 4.91/38.00 61.54 1.53
lmo1811 ATP-dependent DNA helicase RecG 5.69/78.00 98.2 0.52
lmo1183 Hypothetical protein 6.86/22.20 42.97 0.50
lmo0396 Pyrroline-5-carboxylate reductase 5.08/28.10 32.57 0.55
COG1) Locus2) Putative function3) MM/Pie4) Protein score Ratio5)
lmo0300 Phospho-beta-galactosidase 4.99/53.60 30.36 0.55
lmo0067 Dinitrogenase reductase ADP-ribosylation protein 4.89/37.70 328.92 0.48
(O) Posttranslational modification, protein turnover, chaperones
lmo2069 Class I heat-shock protein (chaperonin) GroES 4.60/100.60 241.72 2.26
lmo1059 Thioredoxin 4.83/199.20 41.1 3.58
lmo2206 Protease subunit B 64.97 /97.50 95.97 0.43
lmo0520 Transcriptional regulator 4.91/38.00 61.54 1.53
lmo1811 ATP-dependent DNA helicase RecG 5.69/78.00 98.2 0.52
lmo1183 Hypothetical protein 6.86/22.20 42.97 0.50
lmo0396 Pyrroline-5-carboxylate reductase 5.08/28.10 32.57 0.55
lmo0300 Phospho-beta-galactosidase 4.99/53.60 30.36 0.55
lmo0067 Dinitrogenase reductase ADP-ribosylation protein 4.89/37.70 328.92 0.48
(M) Cell wall/membrane/envelope biogenesis
lmo0582 Peptidase P60 8.56/42.70 515.01 2.13
lmo2555 Glycosyl transferase family 1 6.91/47.89 55.32 0.377
lmo2754 D-alanyl-D-alanine carboxypeptidase 6.93/48.07 100.2 0.77
lmo2185 Sortase B 5.033/21.05 59.56 0.78
(I) Lipid transport and metabolis
lmo0354 Fatty-acid--CoA ligase 6.268/58.10 30.86 1.36
lmo1753 Diacylglycerol kinase 5.64/34.02 37.46 0.47
(K)Transcription
lmo0630 PTS fructose transporter subunit IIA 5.57/77.72 52.06 3.05
lmo2606 DNA-directed RNA polymerase subunit alpha 4.797/34.91 42.97 1.37
lmo1408 PadR family transcriptional regulator 8.82/20.72 97.05 0.36
lmo1878 Transcriptional regulator MntR 5.46/16.39 45.26 0.68
lmo0258 DNA polymerase III subunit beta 4.70/42.43 30.84 0.58
lmo1899 ATP-dependent helicase DinG 5.78/106.06 45.71 0.30
lmo2107 DeoR family transcriptional regulator 5.28/28.40 38.58 0.30
(D) Cell cycle control, cell division, chromosome partitioning
lmo1606 DNA translocase FtsK 5.317/87.79 50.78 1.46
(E) Amino acid transport and metabolism
lmo1663 Asparagine synthetase 5.02/48.99 38.39 1.20
lmo1628 Tryptophan synthase beta chain 5.50/43.70 62.16 0.51
lmo2539 Serine hydroxymethyltransferase 5.53/45.12 41.06 0.76
(J)Translation, ribosomal structure and biogenesis
lmo1530 Queuine tRNA-ribosyltransferase 7.21/42.92 38.02 1.31
lmo1459 Glycyl-tRNA synthetase subunit alpha 4.85/34.30 83.53 0.65
lmo2656 30S ribosomal protein S12 11.24/15.10 54.09 0.66
(F) Nucleotide transport and metabolism
lmo2155 Ribonucleotide-diphosphatereductase alpha 5.59/87.39 115.43 0.36
COG1) Locus2) Putative function3) MM/Pie4) Protein score Ratio5)
(L) Replication, recombination and repair
lmo1320 DNA polymerase III PolC 5.26/162.70 80.30 0.76
(V) Defense mechanisms
lmo0607 ABC transporter ATP-binding 5.56/63.3 0 52.10 0.35
lmo1964 lABC-type multidrug transport system 6.35/33.29 34.51 0.44
lmo0028 Similar to E.coli microcin C7 self-immunity protein 4.48/34.38 61.81 0.67
(S)Function unknown
lmo2181 Sortase 5.35/28.62 47.73 0.79
(H) Coenzyme transport and metabolism
lmo1042 Molybdopterin biosynthesis protein 5.167/45.00 38.26 0.44
lmo1093 NH(3)-dependent NAD(+) synthetase 5.07/30.59 32.26 0.68
lmo2770 Glutathione synthetase 4.92/88.56 36.36 0.47
(T) Signal transduction mechanisms
lmo1935 Protein-tyrosine/serine phosphatase 4.92/36.63 36.18 0.63
(R) General function prediction only
lmo0919 Antibiotic ABC transporter ATP-binding protein 8.929/59.10 74.01 1.44
lmo1760 Geranylgeranylglyceryl phosphate synthase-like protein 5.109/25.36 37.53 0.42
lmo1226 LacI family transcription regulator 5.79/38.81 43.98 0.72
lmo1537 Predicted GTPase 5.12/47.1 0 37.98 0.63
lmo2232 Hypothetical protein 4.70/49.10 38.21 0.77
lmo2359 Hypothetical protein 4.89/31.07 31.27 1.58
Table 3 Differentially expressed proteins identified by iTRAQ
Fig.5 COG clustering analysis of differentially expressed proteins
[1]   Kumaraswamy M, Do C, Sakoulas G , et al. Listeria monocytogenes endocarditis: case report, review of the literature, and laboratory evaluation of potential novel antibiotic synergies. International Journal of Antimicrobial Agents, 2018,38(1):51-60.
[2]   Price R, Jayeola V, Niedermeyer J , et al. The Listeria monocytogenes key virulence determinants hly and prfA are involved in biofilm formation and aggregation but not colonization of fresh produce. Pathogens, 2018,7(1):7-18.
doi: 10.3390/pathogens7010007
[3]   Pillich H, Puri M, Chakraborty T . ActA of Listeria monocytogenes and its manifold activities as an important listerial virulence factor. Current Topics in Microbiology and Immunology, 2017,399:113-132.
[4]   Dunne W M Jr . Bacterial adhesion: seen any good biofilms lately. Clinical Microbiology Reviews, 2002,15(2):155-166.
doi: 10.1128/CMR.15.2.155-166.2002 pmid: 118072
[5]   Mah T F , O’Toole G A . Mechanisms of biofilm resistance to antimicrobial agents. Trends in Microbiology, 2001,9(1):34-39.
doi: 10.1016/S0966-842X(00)01913-2 pmid: 11166241
[6]   Trost M, Wehmhöner D, Kärst U , et al. Comparative proteome analysis of secretory proteins from pathogenic and nonpathogenic Listeria species. Proteomics, 2005,5(6):1544-1557.
doi: 10.1002/pmic.v5:6
[7]   Gilan I, Sivan A . Effect of proteases on biofilm formation of the plastic-degradingactinomycete Rhodococcus ruber C208. Fems Microbiology Letters, 2013,342(1):18-23.
doi: 10.1111/1574-6968.12114
[8]   Desvaux M, Dumas E, Chafsey I , et al. Comprehensive appraisal of the extracellular proteins from a monoderm bacterium: theoretical and empirical exoproteomes of Listeria monocytogenes EGD-e by secretomics. Journal of Proteome Research, 2010,9(10):5076-5092.
doi: 10.1021/pr1003642
[9]   Treberg J R, Banh S, Pandey U , et al. Intertissue differences for the role of glutamate dehydrogenase in metabolism. Neurochemical Research, 2014,39(3):516-526.
doi: 10.1007/s11064-013-0998-z pmid: 23412807
[10]   Plaitakis A, Berl S, Yahr M D . Neurological disorders associated with deficiency of glutamate dehydrogenase. Annals of Neurology, 1984,15(2):144-153.
doi: 10.1002/ana.410150206 pmid: 6703655
[11]   Okwumabua O, Persaud J S, Reddy P G . Cloning and characterization of the gene encoding the glutamate dehydrogenase of Streptococcus suis serotype 2. Clin Diagn Lab Immunol, 2001,8(2):251-257.
[12]   Glaser P, Frangeul L, Bunchrieser C , et al. Comparative genomics of Listeria species. Science, 2001,294(26):849-852.
[13]   Luo Q, Zhou Q C, Deng L F , et al. Some essential elements on the inlC promoter for PrfA-dependent regulation in Listeria monocytogenes. Acta Microbiologica Sinica, 2007,47(1):22-28.
[14]   王莉, 冯飞飞, 张强 , 等. 单核细胞增生李斯特菌毒力基因inlB/actA双缺失突变株的构建. 生物技术通报, 2010,11:182-185.
[14]   Wang L, Feng F F, Zhang Q , et al. Construction of a mutant strain of Listeria monocytogenes with a deletion of inlB and actA. Biotechnology Bulletin, 2010,11:182-185.
[15]   Premaratne R J, Lin W J, Johnson E A . Development of an improved chemically defined minimal medium for Listeria monocytogenes. Applied & Environmental Microbiology, 1991,57(10):3046-3048.
[16]   冯飞飞, 张强, 王莉 , 等. 毒力基因调控蛋白PrfA促进单核细胞增生李斯特菌生物被膜的形成. 微生物学通报, 2011,38(9):1450-1457.
[16]   Feng F F, Zhang Q, Wang L , et al. The virulence regulator PrfA plays a significant role in the Listeria monocytogenes biofilm formation. Microbiology China, 2011,38(9):1450-1457.
[17]   Djordjevic D, Wiedmann M, Mclandsborough L A . Microtiter plate assay for assessment of Listeria monocytogenes biofilm formation. Appl Environ Microbiol. Applied & Environmental Microbiology, 2002,68(6):2950-2958.
[18]   于新惠, 张颖, 王文静 , 等. rmlB基因在单核细胞增生李斯特菌耐药性、生物被膜形成和毒力方面的作用. 微生物学通报, 2017,44(1):161-171.
[18]   Yu X H, Zhang Y, Wang W J , et al. Contribution of rmlB in envelope-acting a antibiotic resistance biofilm formation and virulence in Listeriamonocytogenes. Microbiology China, 2017,44(1):161-171.
[19]   张颖, 汤雨倩, 沈怡 , 等. CodY在单核细胞增生李斯特菌运动和毒力方面的作用. 中国生物工程杂志, 2017,37(7):56-63.
doi: 10.13523/j.cb.20170711
[19]   Zhang Y, Tang Y Q ,Shen Y et al.The role of CodY in the regulation of flagellar motility and virulence in Listeria monocytogenes. China Biotechnology, 2017,37(7):56-63.
doi: 10.13523/j.cb.20170711
[20]   Ren Y H , Yi-Jing L I , Wang X S , et al. Cloning and sequence analysis of the hly gene of Listeria monocytogenes. Journal of Northeast Agricultural University, 2004,35(1):46-49.
[21]   Gunka K, Commichau F M . Control of glutamate homeostasis in Bacillus subtilis: a complex interplay between ammonium assimilation, glutamate biosynthesis and degradation. Molecular Microbiology, 2012,85(2):213-224.
doi: 10.1111/mmi.2012.85.issue-2
[22]   Tian G, Wang Q, Wei X , et al. Glutamate dehydrogenase (RocG) in Bacillus licheniformis WX-02: Enzymatic properties and specific functions in glutamic acid synthesis for poly-γ-glutamic acid production. Enzyme & Microbial Technology, 2017,99(6):9-15.
[23]   Glenn S M . Genes involved in attachment of Listeria monocytogenes to abiotic surfaces. Leicester: University of Leicester, 2014.
[24]   Theilacker C, Sava I, Sanchez-Carballo P , et al. Deletion of the glycosyltransferase bgsB of Enterococcus faecalis leads to a complete loss of glycolipids from the cell membrane and to impaired biofilm formation. BMC Microbiology, 2011,11(1):67-78.
doi: 10.1186/1471-2180-11-67
[25]   Beckert S, Kreikemeyer B, Podbielski A . Group A streptococcal rofA gene is involved in the control of several virulence genes and eukaryotic cell attachment and internalization. Infection & Immunity, 2001,69(1):534-537.
[26]   Chastanet A, Derre I, Nair S , et al. clpB, a novel member of the Listeria monocytogenes CtsR regulon, is involved in virulence but not in general stress tolerance. Journal of Bacteriology, 2004,186(4):1165-1174.
doi: 10.1128/JB.186.4.1165-1174.2004
[27]   Pilgrim S, Kolb-Mäurer A, Gentschev I , et al. Deletion of the gene encoding p60 in Listeria monocytogenes leads to abnormal cell division and loss of actin-based motility. Infection & Immunity, 2003,71(6):3473-3784.
[1] SHAO Ying-zhi,CHE Jian,CHENG Chi,JIANG Zhi-yang,XUE Chuang. Advances in Molecular Biological Methods to Improve Extracellular Electron Transport Efficiency of Electroactive Microorganisms[J]. China Biotechnology, 2021, 41(6): 50-59.
[2] CHANG Lu, HUANG Jiao-fang, DONG Hao, ZHOU Bin-hui, ZHU Xiao-juan, ZHUANG Ying-ping. A Review on Bioremediation and Detection of Heavy Metal Pollution by Synthetic Biological Engineered Microorganisms and Biofilms[J]. China Biotechnology, 2021, 41(1): 62-71.
[3] DUAN Hai-rong,WEI Sai-jin,LI Xun-hang. Advances in Rhamnolipid Biosynthesis by Pseudomonas aeruginosa Research[J]. China Biotechnology, 2020, 40(9): 43-51.
[4] CHEN Zi-han,ZHOU Hai-sheng,YIN Xin-jian,WU Jian-ping,YANG Li-rong. Optimizing the Culture Conditions for Amphibacillus xylanus Glutamate Dehydrogenase Gene Engineering Bacteria[J]. China Biotechnology, 2019, 39(10): 58-66.
[5] Jing-xian LIU,Xin HE,Hui-ming HAN. New Progress in the Study of Streptococcus suis Type 2 Virulence Factors[J]. China Biotechnology, 2018, 38(3): 97-104.
[6] HE Lin-wei, LIU Zhang-min, FENG Yan, CUI Li. High Throughput Screening Method and Application for L-glutamate Specific Aminotransferase[J]. China Biotechnology, 2017, 37(8): 59-65.
[7] ZHANG Ying, TANG Yu-qian, SHEN Yi, LUO Qin. The Role of CodY in the Regulation of Flagellar Motility and Virulence in Listeria monocytogenes[J]. China Biotechnology, 2017, 37(7): 56-63.
[8] SHI Ya-hui, YU Xin-hui, ZHANG Ying, LUO Qin. Effect of the Deletion of RsbU on Biofilm Formation in Listeria Monocytogenes[J]. China Biotechnology, 2015, 35(7): 45-54.
[9] LI Juan, LIU Li-na, HU Dan, ZHU XU-hui, GONG Xiu-fang, ZHAO Lin, ZHONG Jing-hao, PAN Xiu-zhen, WANG Chang-jun. Construction and Virulence Analysis of MocR Transcription Regulator SSU0562 Gene Knock-out Mutant in Streptococcus suis Serotype2[J]. China Biotechnology, 2015, 35(7): 8-14.
[10] JIANG Li-han, CHENG Xiao-long, QU Hui-ping, HUANG Yi-yi, WANG Shu-jia, LUO Qin. Effect of the Deletion of CcpA on Virulence in Listeria monocytogenes[J]. China Biotechnology, 2014, 34(8): 29-34.
[11] LIU Qiang, XU Qing, LI Shuang. Fumaric Acid Fermentation by Immobilized Rhizopus oryzae with Biofilm Reactor[J]. China Biotechnology, 2014, 34(2): 93-97.
[12] DA Fei, HOU Zheng, MENG Jing-ru, JIA Min, LUO Xiao-xing. Blocking Methicilli-Resistant Staphylococcus Aureus Agr Quorom Sensing System by Antisense LNA[J]. China Biotechnology, 2013, 33(5): 1-6.
[13] LIU Xia, GUO Qing-long, WANG Ruo-jun, WANG Hong-hai, PEI Xiu-ying, ZHANG Xue-lian. Screening and Identification of Mycobacterium tuberculosis Biofilm Formation Related Genes[J]. China Biotechnology, 2013, 33(4): 15-21.
[14] LI Long-jie, ZHOU Gang, SHI Qing-shan, OUYANG You-sheng, CHEN Yi-ben, HU Wen-feng. Isolation, Identification and Characterization of a Biofilm Formation Strain[J]. China Biotechnology, 2013, 33(11): 38-43.
[15] GAO Zong-liang, GU Yuan-xing, ZHAO Feng, LIU Yong-sheng. Advance in Active Biofilm Dispersal Mechanism[J]. China Biotechnology, 2012, 32(02): 117-122.